top of page
a r X i v
Designing Perfect Simulation Algorithms using Local Correctness
Mark Huber
arXiv:1907.06748
[arXiv]
Robust estimation of the mean with bounded relative standard deviation
Mark Huber
arXiv:1908.05386
[arXiv]
Halving the bounds for the Markov, Chebyshev, and Chernoff inequalities through smoothing
M. Huber
arXiv:1803.06361
[arXiv]
An optimal (ε,δ)-approximation scheme for the mean of random variables with bounded relative variance
M. Huber
arXiv:1706.01478
[arXiv]
The Fundamental Theorem of Perfect Simulation
M. Huber
arXiv:1704.03561
[arXiv]
Partially Recursive Acceptance Rejection
M. Huber
arXiv:1701.0821
[arXiv]
An estimator for Poisson means whose relative error distribution is known
M. Huber
arXiv:1605.09445
[arXiv]
Improving Monte Carlo randomized approximation schemes
M. Huber
arXiv:1411.4074
[arXiv]
Differential expression analysis for multiple conditions
C. Evans, J. Hardin, M. Huber, D. Stoebel, and G. Wong
arXiv:1410.3370
Algebraic properties of Heilbronn's exponential sum: supercharacters, Fermat congruences, and Heath-Brown's bound
S. R. Garcia, M. Huber, and B. Lutz
arXiv:1312.1034
bottom of page