a r X i v

Designing Perfect Simulation Algorithms using Local Correctness

Mark Huber

arXiv:1907.06748

[arXiv]

Robust estimation of the mean with bounded relative standard deviation

Mark Huber

arXiv:1908.05386

[arXiv]

Halving the bounds for the Markov, Chebyshev, and Chernoff inequalities through smoothing

M. Huber

arXiv:1803.06361

[arXiv]

An optimal (ε,δ)-approximation scheme for the mean of random variables with bounded relative variance

M. Huber

arXiv:1706.01478

[arXiv]

The Fundamental Theorem of Perfect Simulation

M. Huber

arXiv:1704.03561

[arXiv]

Partially Recursive Acceptance Rejection

M. Huber

arXiv:1701.0821

[arXiv]

An estimator for Poisson means whose relative error distribution is known

M. Huber

arXiv:1605.09445

[arXiv]

Improving Monte Carlo randomized approximation schemes

M. Huber

arXiv:1411.4074

[arXiv]

Differential expression analysis for multiple conditions

C. Evans, J. Hardin, M. Huber, D. Stoebel, and G. Wong

arXiv:1410.3370

[arXiv]

Algebraic properties of Heilbronn's exponential sum:  supercharacters, Fermat congruences, and Heath-Brown's bound

S. R. Garcia, M. Huber, and B. Lutz

arXiv:1312.1034

[arXiv]

© 2019 by Mark Huber

  • w-facebook
  • w-youtube
  • Google+ Basic Square