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Preface

These lecture notes cover a one semester undergraduate course in Stochastic Operations
Research. The goal here is to introduce students to a broad range of ideas used in Stochastic
OR. The notes start with queuing theory, then move on to simulation techniques. This is
followed by decision theory and game theory. After that is a brief foray into randomized
algorithms, before settling on simple techniques for forecasting from time series.

The preparation needed for this course is a typical undergraduate course in probability.
In particular, knowledge of expected value together with exponential and uniform distribu-
tions is a must. The text Probability: Theory and Exploration is OpenAccess and free to use,
and covers all the ideas from Probability needed for the course. For those needing a less
comprehensive review, the �rst Appendix provides a rapid introduction to probability.
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Chapter 1

What is Stochastic Operations Research?

Question of the Day What is stochastic Operations Research?

Today

• Overview of the course

• Some probability review

OR is part of applied mathematics

• What decisions have you made lately?

• What queues have you been in?

• Have you ever tried to predict the future based on probabilities?

What is Operations Research

• Mathematics behind running an operation e�ciently

• Perfect information (each crate of apples costs $3.45) uses deterministic OR

• Partial information (apples cost random) uses stochastic OR

Probability encodes partial information

• Variable x ∈ R, could be anything

• Random variable X ∈ R we have more information

• For example, if X is a roll of a fair six sided die:

X ∼ Unif({1, 2, 3, 4, 5, 6}).
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• We know more about X than x ∈ {1, 2, 3, 4, 5, 6}

P(X ≤ 2) = P(X = 1) + P(X = 2) =
1

6
+

1

6
=

2

6
.

Partial information arises because

• Based on future events (ex: what will next customer arrive)

• It costs too much to obtain information (ex: how many units will the PS4 sell?)

• Probability measures/distributions give a simple way to model exactly how much
info we do have.

Example The bookstore models the number of books needed for a class as a binomial
random variable w/ parameters n = 20, p = 0.6

How many books should be ordered to have at least a 95% chance of meeting demand?

X ∼ Bin(20, 0.6)

[Each student independently has a 0.6 chance of buying the book at the bookstore.]
Q: What is smallest a: P(X ≤ a) ≥ 0.95?

P(X = i) =

(
(

n

)
, i)pi(1− p)i

=

(
20

i

)
(0.6)i(0.4)20−i

We will use the statistical software R in this course.
Open source (and free) from www.r-project.org

pbinom(seq(0,20),20,0.6)

tells us P(X ≤ a) for all a ∈ {0, 1, 2, . . . , 20}

[1] 1.099512e-08 3.408486e-07 5.041261e-06 4.734497e-05 3.170311e-04
[6] 1.611525e-03 6.465875e-03 2.102893e-02 5.652637e-02 1.275212e-01

[11] 2.446628e-01 4.044013e-01 5.841071e-01 7.499893e-01 8.744010e-01
[16] 9.490480e-01 9.840388e-01 9.963885e-01 9.994760e-01 9.999634e-01
[21] 1.000000e+00

So the 17th entry is the �rst where P(X ≤ a) > 0.95.
The 17th entry of seq(0,20) is 16 . Test with:
pbinom(15,20,0.6)
pbinom(16,20,0.6)
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Types of random variables

De�nition 1
A random variable X is discrete if there is a set {x1, x2, x3, . . .} such that P(X ∈
{x1, x2, . . .}) = 1.

Examples of discrete distributions

• X ∼ Unif(Ω), Ω is �nite

• X ∼ Bern(p) Number of successes in 1 trial.

• X ∼ Bin(n, p) Number of successes in n independent trials.

• X ∼ Geo(p) Number of trials until �rst success.

• X ∼ NegBin(r, p) Number of trials until r successes.

De�nition 2
A random variable X is continuous if for all a ∈ R, P(X = a) = 0.

Fact 1
Continuous random variables X all have a density fX that satis�es for all a < b,

P(a ≤ X ≤ b) =

∫ b

a
fX(s) ds.

De�nition 3
The indicator function 1(expression) is 1 if the expression is true, and 0 if the expres-
sion is false.

Example

3 184
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0

1

3

1(x ≥ 3)

Examples of continuous distributions

• X ∼ N(µ, σ2), fX(s) = 1
σ
√

2π
exp

(
−(s− µ)2/[2σ2]

)
• X ∼ Exp(λ), fX(s) = λ exp(−λs)1(s ≥ 0)

• X ∼ Unif([a, b]), fX(s) = 1
b−a1(s ∈ [a, b]).

Example Our bookstore models the time until the arrival of the next customer as
Exp(2/hr). What is the chance that the next customer does not arrive in the �rst hour?

0 1
×

A: Let T be time of �rst arrival.
Then T ∼ Exp(2) (do everything in hours)

P(T ≥ 1) =

∫ ∞
1

2 exp(−2s) ds

= − exp(−2s)|∞1 = lim
b→∞

−e−2b + e−2(1) = e−2

≈ 13.53%.

Another example Back to the bookstore, what is

P(T ≥ 1|T ≥ 1/3) =?.

Well,

P(T ≥ 1|T ≥ 1/3) =
P(T ≥ 1, T ≥ 1/3)

P(T ≥ 1/3)
=

P(T ≥ 1)

P(T ≥ 1/3)
=

e−2(1)

e−2(1/3)
= e−4/3.

In general...
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Fact 2
For X ∼ Exp(λ), t ≥ 0, s ≥ 0:

P(X ≥ t+ s|X ≥ t) = P(X ≥ s).

Once X ≥ t, “forgets” about past. Call it memoryless

De�nition 4
The continuous memoryless distribution is the exponential distribution.

Sequences Let X1, X2, . . . be a sequence of r.v.’s.
Often they have the same distribution...
and often any subset of the r.v.’s are independent.

iid = independent and identically distributed

Certain random variables X have a �nite expected value E[X].

Fact 3 (Strong Law of Large Numbers)
Suppose X has expected value E[X]. Then for X1, X2, . . . iid with Xi ∼ X :

lim
n→∞

X1 +X2 + · · ·+Xn

n
= E[X].

[Note: it is not necessary for the variance of X to be �nite for this to hold.]
Calculating E[X]:

If X is discrete: E[X] =
∑

s:P(X=s)>0

s · P(X = s)

If X is continuous: E[X] =

∫ ∞
−∞

sfX(s) ds

Calculating E[g(X)]:

If X is discrete: E[X] =
∑

s:P(X=s)>0

g(s) · P(X = s)

If X is continuous: E[X] =

∫ ∞
−∞

g(s)fX(s) ds
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Chapter 2

Queues

Question of the Day Customers arrive at a help desk at rate 10/hour randomly w/
interarrival distributions exponential. On average, how many customers arrive in an
eight hour workday?

Today

• Queues

• Queue notation

• Stopping time

Queues (aka waiting lines)

• Inevitable part of life with limited resources

• Service providers must decide who to serve �rst

• Time sensitive

– Medical care
– Other emergencies
– Google response (too long, user leaves

• More servers (emergency personel, computer servers, etcetera) cost money

• Basic queuing models can be analyzed mathematically

• Complex queuing models studied using simulations

De�nition 5
A queue consists of a set of customers waiting for a service.
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Queueing terms

De�nition 6
The queue discipline is the method by which the next customer in the queueing system
is selected for service.

De�nition 7
The service time is the time needed to serve a single customer.

De�nition 8
The interarrival time is the time between two arrivals of customers to the queue.

channels the # of servers
FIFO �rst in, �rst out
LIFO last in, �rst out
priority highest priority served �rst
capacity Maximum # of customers in queue

Queuing networks Often a queue feeds into other queues

ENTER

Server 1

Server 2

Server 3

De�nition 9
A Queueing network is a collection of queues set up as a graph where each node is a
server with a queue. If server i has any outgoing arcs, then when a customer completes
service i, it must join one of the queues at the end of an outgoing arc.

Examples:

• Tra�c systems

• Internet

• Telephone system
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Qotd
interarrival time ∼ Exp(10/hr)

0 8
× × ×

Exp(10) Exp(10) Exp(10) Exp(10)

Assume interarrival times independent unless speci�ed otherwise

A1, A2, A3, . . .
iid∼ Exp(10).

[Recall: iid means independent, identically, distributed.]

Time of 1st arrival A1

2nd arrival A1 +A2

3rd arrival A1 +A2 +A3

What is the expected number of arrivals in [0, 8]?
To answer, need Wald’s Equation.

Wald’s Equation This is a result covered in Stochastic Processes.
In this course, will use results like these
Will rarely prove them.

Fact 4 (Wald’s Equation)
Let X1, X2, . . .

iid∼ X where E[X] is �nite. Let T be a stopping time with respect to
X1, X2, . . .. If

1. P(X ≥ 0) = 1 or

2. E[T ] <∞, then

E

(
T∑
n=1

Xn

)
= E[T ]E[Xi].

Wald’s equation uses notion of stopping times

De�nition 10
T is a stopping time for a sequence X1, X2, . . . if for all n, it is possible to determine if
{T ≤ n} using only the values X1, . . . , Xn.

• Example:
T = inf{n : A1 +A2 + · · ·An > 8}.
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• The event {T ≤ 5} consists of

∪5
i=1{T = i} = {A1 > 8} ∪ {A1 < 8 < A2} ∪ {A2 < 8 < A3} ∪

{A3 < 8 < A4} ∪ {A4 < 8 < A5}
= {A5 > 8}.

• To determine if T ≤ 5 requires knowing if {A5 > 8}.

• Note that # of arrivals in [0, 8] is T − 1.

Since Ai ≥ 0, Wald’s Equation applies:
T∑
i=1

Ai = E[T ]E[Ai].

Since Ai ∼ Exp(10), E[Ai] = 1/10. Also
T∑
i=1

Ai = time of �rst arrival after time 8.

For example, in this picture T = 4,
∑T

i=1Ai = 9.1:

0 8
× × × ×

9.1

Exp(10) Exp(10) Exp(10) Exp(10)

In general,
T∑
i=1

Ai = 8 + time from 8 until next arrival

Use the memoryless properties of exponential random variables

Fact 5
If X ∼ Exp(λ), then

[X − r|X > r] ∼ Exp(λ).

Fact 6 (Markov property for exponential interarrival times)
Let Ti = A1 + · · ·+Ai be the ith arrival time where the Ai are iid Exp(λ). Then

[Ai − a|Ai−1 < a,Ai > a] ∼ Exp(λ).

This also holds when working with stopping times:
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Fact 7 (Strong Markov property for exponential interarrival times)
Let Ti = A1 + · · ·+Ai be the ith arrival time where the Ai are iid Exp(λ), and T be a
stopping time. Then

[AT − a|AT−1 < a,AT > a] ∼ Exp(λ).

So,
∑T

i=1Ai = 8 +X , where X ∼ Exp(10).
Putting this all together:

E [8 +X] = E[T ](1/10).

The left hand side is 8 + 1/10, so E[T ] = 8(10) + 1, and

E[T − 1] = 8(10) = 80 .

Generally:

Fact 8 (Expected arrivals for exponential interarrival times)
With iid interarrival times with Ai ∼ Exp(λ), the average number of arrivals in time
[a, b] is (b− a)λ.
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Chapter 3

Little’s Law

Question of the Day Customers arrive at a store at rate 5 per hour, and stay an
average for 20 minutes. What is the long term average number of customers in the
store at any point in time?

Today

• Queue notation

• Little’s Law

Last time

• Arrivals came exponentially

• Can analyze exactly in this case

• What if interarrivals arbitrary?

Notation for queues General queue notation has six slots:

∗/ ∗ / ∗ / ∗ / ∗ /∗

arrival dist

service dist

# of servers

system capacity

total # of arrivals

queue discipline

For example:
M/M/1/∞/∞/FIFO

is a queue with 1 server, an in�nite length queue and set of customer arrivals, and uses the
�rst in-�rst out system of queue discipline.
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The code for the �rst two entries is as follows:

M Markovian=Memoryless=Exponential distribution
D Deterministic (constant) times
Ek Erlang w/ parameter k
GI General independent
G General (possibly dependent)

Reminder, if A1, . . . , Ak are iid Exp(λ), then

A1 + · · ·Ak

are Erlang with parameters k and λ.
Often only the �rst three slots used:

• Consider an M/D/2 queue

• The arrivals are exponential

• The service times are determinstic (constant)

• There are 2 servers

Some queue disciplines

• FIFO (�rst in, �rst out) (aka FCFS=�rst come, �rst served)

• SIRO service in random order

The simplest queue (and easiest to analyze) is

M/M/1/∞

Commonly used variables with queues are:

λ = arrival rate (expected arrivals per unit time)
µ = departure rate (expected services per unit time by each server)
s = # of servers

ρ =
λ

µ · s
capacity utilization

pn = steady state chance of queue length being n
L = expected long run length of line

Wq = expected long run wait for a customer
W = Wq + expected service time for customer

Use the term “steady-state” to describe asymptotic behavior.
Queues take time to reach equilibrium if start empty.
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In the 1950’s, practitioners started to notice something.
No matter what the arrival and service distributions were,

average line length = arrival rate times average time spent in system

Conjectured by Morse, proved by John Little in 1961.

Theorem 1 (Little’s law)
The average # of customers in a queue equals the long term arrival rate times the average
time a customer spends in the system. That is,

L = λW.

• This is an amazing theorem!

• Works no matter what arrival and service distributions are!

• Also independent of queue discipline!

Qotd Arrival rate 5 per hour. Each averages 20 minutes in store.

λ = 5/hr, W = 1/3hr⇒ L = 5/3 ≈ 1.666

is the average # of customers in the store.

Example: Archytas consulting measures a queue at various times during the day and
�nds the average queue length is 11 individuals. By sampling random customers they
estimate W to be 5 minutes. What is the customer arrival rate?

L = λW ⇒ λ = L/W = 11/(5 min) = 2.200/min .

Proof idea
Do idea rather than formal proof.
Graph the length of the queue versus time.
Each rectangle of area corresponds to a person arrived in queue.
Let Wi denote the time person i spends in system.
Then area under queue in [0, t] is

T∑
i=1

Wi −
T∑
i=1

min(Wi − t, 0).

where T is the number of arrivals in [0, t].
Example picture
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1

2

2

3

4

4

So the average length of the queue is

1

t

T∑
i=1

Wi −
1

t

T∑
i=1

max(Ti +Wi − t, 0).

If E[Wi] <∞, the last term goes to 0 as t→∞
Now E[T/t]→ λ, that’s what the steady state arrival rate is. If Wi independent,

E

[
T∑
i=1

Wi

]
= E[T ]E[Wi],

by Wald’s Equation, so

lim
t→∞

E

[
1

t

T∑
i=1

Wi

]
= lim

t→∞
E[T/t]W = λW.

When Wi not independent (and depending on queue discipline, they might not be!) the
proof is much harder.
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Chapter 4

Idle time for G/G/s queue

Question of the Day A Google server receives on average 200 requests a second,
each of which takes on average 0.001 seconds to resolve. What percentage of time is
the server idle?

Today

• Idle time for G/G/s queue

• Steady state behavior for M/M/1 queue

Qotd

• Consider an interval of time [0, t].

• During this time there are on average 200t requests

• Each request takes on average 0.001 time to resolve.

• Let Si denote time needed to service request i.

• By Wald: E
[∑T

i=1 Si

]
= E[T ]E[Si]

• So the average time to resolve requests received in [0, t] is

(200t)(0.001) = t/5.

• Not all of those requests are served inside interval [0, t]

× ×

0 t

• When t large, extra on end negligible
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• Percentage time server busy ≈ (t/5)/(t− 0) = 1/5

• Server idle roughly 80% of time.

Capacity utilization

De�nition 11
For a G/G/s queue, the capacity utilization is

ρ =
λ

µ · s
.

Fact 9
For a G/G/s queue with �nite expected service and interarrival times, and ρ < 1, the
long run (steady state) busy time is ρ, and the long run idle time is 1− ρ.

Proof idea

• The average number of customers arriving in [0, t] is t · λ.

• If ρ < 0, the queue returns to empty after some �xed expected time R (proof uses
renewal theory)

• Expected length of one service 1/[s · µ]

• Expected length of service needed for customers arriving in [0, t] is tλ/[s · µ]

• Expected length of service needed for customers arriving in [0, t] that happens in
[0, t] is between (t−R)λ/[s · µ] and tλ/[s · µ].

• As t goes to in�nity, percentage time busy is λ/[s · µ]

Stochastic Processes

De�nition 12
A collection of random variables {Xt} is called a stochastic process.

• Example: Let Lt be the length of a queue at time t.

• Note L1 and L1.1 are not independent

• Often interested in steady state behavior
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De�nition 13
For a stochastic process {Xt}t≥0, the steady state time spent in state i is

lim
t→∞

1

t

∫ t

0
1(Xt = i) dt.

Example

• Suppose X0 = 0. Then Xt spends 1.5 seconds in state 0 and jumps to 1.

• From 1, Xt spends 1 second in state 1, then jumps to 0.

• The steady state time Xt spends in state 0 is 1.5/(1.5 + 1) = 60%

• Note: Replace 1.5 seconds with an exponential random variable with rate 1.5 and 1
with an exponential random variable with rate 1.

• Then still Xt spends 60% of time in steady state in state 0.

De�nition 14
A stochastic process {Xt}t≥0 is a jump process if the path t 7→ Xt is constant with a
number of discontiuities that is countably in�nite with probability 1.

De�nition 15
A stochastic process over state space Ω is a continuous time Markov chain if it is a
memoryless jump process. This means there is a function λ : Ω→ [0,∞) where at time
t, given {Xt′}t′≤t, the time τ of the next jump satis�es τ − t ∼ Exp(λ(Xt)), and the
distribution of Xτ only depends on Xt.

Fact 10
Suppose X ∼ Exp(λX) and Y ∼ Exp(λY ) are independent. Then min{X,Y } ∼
Exp(λX + λY ).

Proof. Recall that A ∼ Exp(λ) if and only if P(A > a) = exp(−λa). So

P(min{X,Y } > a) = P(X > a, Y > a)

= P(X > a)P(Y > a)[independent]
= exp(−λXa) exp(−λY a)

= exp(−[λX + λY ]a)

which means min{X,Y } ∼ Exp(λX + λY ).
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Fact 11
LetXt be the number of customers in anM/M/1 queue at time t. ThenXt is a continuous
time Markov chain.

Proof. Fix t. Consider the time until the next jump. If Xt = 0, this is just the time of the
next arrival, which is Exp(λ). If Xt > 0, this is the time of the next arrival or service,
which is the minimum of two independent exponential random variables, hence also an
exponential random variable.

When Ω discrete, continuous time Markov chains can be represented graphically

• Nodes = states

• Arcs labeled with rate of jump

0 1 2 3 · · ·

λ λ λ λ

µµµµ

18 184



Chapter 5

Balance and detailed balance

Question of the Day In an M/M/2 queue w/ average wait between arrivals of 1
min and average service time for each server of 1.5 min, what is the percentage of
time exactly 1 server is idle?

Today

• Balance and detailed balance equations

• M/M/s equations

Let λ(i, j) be the rate at which state i jumps to state j.

Theorem 2 (Ergodic Theorem)
Suppose there exists a probability distribution π over countable Ω such that for all i ∈ Ω∑

j∈Ω

π(i)λ(i, j) =
∑
i∈Ω

π(i)λ(j, i).

(These are called the balance equations.) Then the steady state amount of time spent in
state i is π(i).

Fact 12
For the M/M/1 queue,

π(i) = (1− ρ)ρi

satis�es the balance equations.

Proof. Start with state 0:

π(0)λ(0, 1) = λ(1− ρ) = (λ/µ)µ(1− ρ) = π(1)λ(1, 0).

19 184



Mark Huber Notes on Stochastic Operations Research

Now suppose i > 0:

π(i)λ(i, i+ 1) + π(i)λ(i, i− 1) = (1− ρ)[(λ/µ)iλ+ (λ/µ)iµ]

= (1− ρ)[λi+1/µi + λi/µi−1]

and

π(i+ 1)λ(i+ 1, i) + π(i− 1)λ(i− 1, i) = (1− ρ)[(λ/µ)i+1µ+ (λ/µ)i−1λ]

= (1− ρ)[λi+1/µi + λi/µi−1]

So the balance equations hold!

This should look familiar!

Fact 13
Let π be the steady state distribution of an M/M/1 queue. Then for L∞ ∼ π, the steady
state line length satis�es

L∞ + 1 ∼ Geo(1− ρ).

In particular L = E[L∞] = ρ/(1− ρ).

Example Suppose our Google server λ = 200, sµ = 1000 is an M/M/1 queue. What
is the average steady state queue length?

L∞ + 1 ∼ Geo(1− 200/1000),

so
E[L+ 1] = 1/.8 = 1.25⇒ E[L] = 0.2500 .

What is the average time a request stays in the system?
Little’s law:

L = λ ·W ⇒ 0.25 = 200W ⇒W = 0.001250 seconds.

What changes with multiple servers

• Let N = # of customers in system

– When N ≥ 2 both servers are working
– When N = 1 one server is working
– When N = 0 no servers are working

• So what is the rate with 2 servers.
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• First server time T1 ∼ Exp(µ), T2 ∼ Exp(µ)...

• ...so �rst service complete min{T1, T2} ∼ Exp(2µ)

CTMC graph looks like:

0 1 2 3 · · ·

λ λ λ λ

2µ2µ2µµ

Balance

• Last time introduced notion of balance

• Probability �ow out of a node = probability �ow in
De�nition 16
For a CTMC, the balance equations are

(∀i ∈ Ω)

∑
j∈Ω

π(i)λ(i, j) =
∑
j∈Ω

π(j)λ(i, j)

 .

• Detailed balance is a stronger condition

• Says that prob �ow from i to j must equal prob �ow from j to i.
De�nition 17
For a CTMC, the detailed balance equations are

(∀i, j ∈ Ω)(π(i)λ(i, j) = π(j)λ(j, i)).

Fact 14
A CTMC that obeys detailed balance for π also obeys the balance equations.

Proof. Suppose π obeys detailed balance. Then∑
j∈Ω

π(i)λ(i, j) =
∑
j∈Ω

π(j)λ(j, i)

so balance is also satis�ed.
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For queues, easier to use detailed balance to solve for π.
M/M/2 queue:

π(0)λ = π(1)µ 2ρπ(0) = π(1)

π(1)λ = π(2)2µ ρπ(1) = π(2)

π(2)λ = π(3)2µ ρπ(2) = π(3)

...
...

...
...

which makes:
π(i) = π(0)2ρi.

Since the probabilities have to add up to 1:

π(0)
[
1 + 2ρ+ 2ρ2 + · · ·

]
= 1

π(0)

[
1 +

2ρ

1− ρ

]
= 1

π(0) =

[
1 +

2ρ

1− ρ

]−1

=
1− ρ
1 + ρ

.

Fact 15
For the M/M/2 queue with ρ = λ(2µ)−1 < 1, the steady state distribution is

π(i) = 2ρi
1− ρ
1 + ρ

and the expected steady state line length is

2ρ

1− ρ2
.

Proof. The expected steady state line length is

∞∑
i=0

iπ(i) =
∞∑
i=1

2
1− ρ
1 + ρ

iρi.

This converges absolutely for ρ < 1 by the ratio test.
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Now
∞∑
i=1

iρi =

∞∑
i=1

i∑
j=1

ρi

=
∞∑
j=1

∞∑
i=j

ρi [by Tonelli’s Theorem]

=
∞∑
j=1

ρj/(1− ρ)

= ρ/(1− ρ)2.

Plugging into the earlier equation gives:

Eπ[line length] =
2ρ

(1 + ρ)(1− ρ)
.

Note as ρ→ 1, expected line length goes to in�nity.
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Bottlenecks and Systems

Question of the Day Suppose that cars obey a 2 second rule, leaving 2 seconds
between them and the car in front of them. A freeway has on the eastbound side 4
lanes that narrow to 2 lanes, leading to a backup of 1400 vehicles. If tra�ce on the 2
lane part is moving at 70 mph, how long will a vehicle that enters the backup wait
before reaching the 2 lane part of the road.

Today

• Bottlenecks in queuing systems

Arrivals Front Desk

average service time 2
minutes

Paperwork

average service time 7
minutes

Departures

Bottlenecks

• Where does the queue form?
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• At paperwork–much slower to get through than Front Desk

• Say that Front Desk and Paperwork are in series

• Capacity for Paperwork much lower than capacity for Front Desk

• (Wait in line will usually be higher for paperwork)

• Overall capacity is min{1/7, 1/2} = 1/7 per minute.

De�nition 18
If customers served by one queue become customers for another queue, the queues are
in series.

Fact 16
For servers connected in series, the overall capacity to serve is equal to the minimum of
the capacities of the servers.

Parallel servers

De�nition 19
When a queue is being serviced by more than one server simultaneously, the servers are
in parallel.

• Example: Parallel computing

Enter

Server 1

average service
time 5 min

Server 2

average service
time 7 min

Leave

• To determine service rate, ask: if queue at Enter has many customers, on average
how many are served in t minutes?

t

5︸︷︷︸
from Server 1

+
t

7︸︷︷︸
from Server 2

= service rate · t
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So
service rate =

1

5
+

1

7
=

12

35
≈ 0.3428 per min

Fact 17
Servers in parallel add their service rates.

Relation to other mathematics

• Related to tropical geometry named in honor of Brazilian mathematician Imre Simon.

• Two operations:

x⊕ y = min{x, y} Series
x⊗ y = x+ y Parallel

De�nition 20
Consider servers {1, . . . , n} each with service rate µi. If there is a subset of servers with
equal service rate where raising that rate would increase the overall service rate of the
system, call that subset a bottleneck.

• Pouring out of a bottle like a series of servers

• Overall �ow=min{�ows in series}
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Q of Day

• The bottleneck is the entry to the two lane highway

• Two second rule

• How fast are cars “being served”(
2 cars
2 sec

)(
3600 sec
1 hour

)
=

3600 cars
hour

• Note: the speed of the cars did not come into it!

• Flow capacity on 4 lane highway:(
4 cars
2 sec

)(
3600 sec
1 hour

)
=

7200 cars
hour

• So if 4 lane highway operating at more than 50% capacity, get backup at merge

• On average every 2 sec, 2 cars are served by two lane highway = 1 car/s.

• So if there are 1400 cars in queue, 1400 s

• Again, doesn’t matter what speed the 2 lanes are moving at!

• 70mpg or 30 mph, what matters is the 2 s rule.

Computer controlled cars

• One way to increase capacity of freeways

• Lower time between cars

• Computer driven cars could (hopefully!) do this safely

• Would save billions in infrastructure costs
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What about accidents

• Suppose people slow down

• But maintain same physical distance between cars

• If they slow 10%, and road was at 90% capacity before

• Causes backup
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Introduction to statistics

Question of the Day Douglas Consulting records queue length at 5 times during
the day of 17, 21, 8, 7, 14. What is the average queue length? What is the standard
eviation?

Today

• Basic statistics

• Introduction to R

Statistics

• The science of data analysis

• Interacts with probability

Fact 18 (Strong Law of Large Numbers)
For X1, X2, . . . iid with �nite mean,

lim
n→∞

X1 + · · ·+Xn

n
= E[Xi] w/ prob 1.

[The sample average converges to the true average with prob 1.]

Putting data in R

• Download R: www.r-project.org

• x <- c(17,21,8,7,14)

• <- is assignment operator

• c standard for concatenate or combine

29 184



Mark Huber Notes on Stochastic Operations Research

Once data is in R

• mean(x)

• ?mean gives related topics, open help window

13.40 is estimate of mean queue length .

Can use R to generate random variates

• runif(n = 10, min = 0, max = 1)

• Generates X1, . . . , X10 ∼ Unif([0, 1]) iid

• mean(runif(n = 10, min = 0, max = 1)

• Can sometimes be quite far away from 1/2

Variance

• V(X) = E((X − E(X))2)

• On average, square of distance from average value.

• (Square so always nonnegative)

• SD(X) =
√

V(X)

• In R: sd(x)

• Gives 5.941 as estimate of standard deviation

µ̂ =
X1 + · · ·+Xn

n
, σ̂ =

√
(X1 − µ̂)2 + · · ·+ (Xn − µ̂)2

n− 1
.

Fact 19
E(µ̂) = E(Xi) and E(σ̂2) = V(Xi). These are unbiased estimates for the mean and
variance. (Note, in general E(σ̂) 6= SD(Xi).)

Subsets of data

• Suppose the consultant decides only middle three data points are accurate

• Use x[2:4] (here [2:4] is the sequence 2,3,4)

• mean(x[2:4]) gives 12.00

• sd(x[2:4]) gives 7.810
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Scripts in R

• A script is a set of commands for software to execute

• Put them in a text �le (end with .R for R)

• Be sure to put them in directory that R is accessing

• getwd() gets the working directory from R

• setwd() sets the working directory for R

• Note \ is an escape character in R, always use / for directories (even in windows)

• A line that begins with the number symbol # will be ignored

• Used for commentating your code

Example script

• Put in �le test.R

# This is a script
x <- c(17,21,8,7,14)
print(mean(x))
print(sd(x))

• print prints the argument to the screen

• Fancier ways exist

• Typing source("test.R") is the same as if I’d typed in those three commands
directly.

Functions

• Take inputs and run some commands, then return output

• Example, making f(x, y) = 2xy2

f <- function(x,y) {
return(2*x*y^2)

}

• Try f(3,1) and f(-2,3) and f(y = 3,x = 2)

• I can make default values for the inputs as follows:
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f <- function(x = 1,y = 3) {
return(2*x*y^2)

}

• If you don’t enter values for x or y, these take over

• Try f(), f(x = 3)

There are �ve types of variables in R

1. Vectors

• x <- c(4,3,2) or y <- 4 (one dimensional vector)

2. Character strings

• y <- "abc"

3. Matrices

• Create by binding vectors together.
• Ex: A <- rbind(c(1,3),c(2,-2))

• det(A), eigen(A)

4. Lists

• Like vectors, but components can be di�erent data types
• x<- list(u = 2,v = "abc")

• Try x and x$u

• (Often used by functions to return di�erent pieces of info)
• Many lists built into R

• Try Nile and h <- hist(Nile) and h and str(h)

5. Data frames

• Like matrices, but components can be mixed type
• d <-data.frame(list(kids=c("Jack","Jill"),ages=c(12,10)))

• d
• Usually data frames are read in from �les
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Simulation

Question of the Day Say arrivals at a queue are Unif([0, 2]) while service is
Unif([0, 1]). What is the long term average waiting time of a customer?

Today

• Simulation

• Discrete event simulation

Complex models

• Most models are too complicated to solve exactly.

• Qotd: G/G/1 queue–tough to get exact answers.

• Simulation provides an easier approach

Simulation

• Generate a random instance of the queue on a computer

• Use that as a “random draw” from the world

• Then use our basic statistical tools to estimate true average

Types of simulation

• Some track entities moving through system

– Particle simulations
– Tra�c simulations
– Airplane boarding

• Some track the state of the system

– Queueing networks
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Example: G/G/1 queue

• State of the system entirely described by...

– Length of the queue
– Current time
– Next service time (if any)
– Next arrival time
– Is a server free?

De�nition 21
An event in a DES is anything that changes the state of a system.

• Two events in G/G/1:

– Service (reduces queue by 1)
– Arrival (increases queue by 1)

Discrete Event Simulation (DES)

De�nition 22
A Discrete Event Simulation (DES) is a method of simulation which focuses on events
that change the state of the system. The key component is an eventlist which keeps
track of currently scheduled events and the times they change.

• Keeps track of clock (current time) and system value

• Keeps list of events that are scheduled to occur

• Each event does two things

– Changes the state
– Possibly schedules other events

Graphical representation

• Nodes represent events

– Below node, write the changes in state

• Arcs represent new schedule events

– Labeled with the time delay before event goes o�
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A B
t

Event A schedules event B after t time

– Note that t might be a random variable.
– Can also have a condition attached (if crossed with ∼)

A B
t

∼

(condition)

Event A schedules event B after t time only if condition holds

Qotd DES

• Three events associated with a queue

1. Someone joins the queue
2. Someone starts service
3. Someone leaves service

• One extra event

– Run event to initialize the system

• State of the system: # in queue = Q, # of servers free = S

Run event

• Initializes Q← 0, S ← 1

• Schedules the �rst arrival.

• In graph form:

Run

S ← 1
Q← 0

Enter
ta ta ∼ Unif([0, 2])
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Enter event

• Increases the queue by 1

• If a server is free, schedules a start of service

• Then schedules next arrival

• That way never run out of arrivals!

Enter

Q← Q+ 1

ta ∼ Unif([0, 2])Start∼

(S > 0)

ta

• Note: no time on Enter→ Start means instantaneous

Start event

• Decreases the queue by 1

• Decreases the available servers by 1

• Schedules the end of service = leave event

Start

S ← S − 1
Q← Q− 1

Leave
ts ts ∼ Unif([0, 1])

Leave event

• Frees up a server

• If queue nonempty, should schedule a service
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Start Leave

S ← S + 1

∼

(Q > 0)

ts ∼ Unif([0, 1])

Putting everything together

Run

S ← 1
Q← 0

Enter

Q← Q+ 1

Start

S ← S − 1
Q← Q− 1

Leave

S ← S + 1

ta

∼

(S > 0)

ts

∼

(Q > 0)

ta

One server empty
queue Add arrival to

queue One server busy One server free

Start new service if queue nonempty

Start new service if server free

ta ∼ Unif([0, 2])

ts ∼ Unif([0, 1])
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Flowchart for DES

Question of the Day How should ties be resolved in a DES?

Today

• Master �owchart for DES

• Ties and deadlocks

• Running through an example

Last time

Run

S ← 1
Q← 0

Enter

Q← Q+ 1

Start

S ← S − 1
Q← Q− 1

Leave

S ← S + 1

ta

∼

(S > 0)

ts

∼
(Q > 0)

ta

Working through example

• Event list at begining:
t state type of event

0.00 (0, 1) Run

• Execute Run event at t = 0:
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Roll ta, get ta = 0.12

Schedule Enter ta time later

Remove Run from event list

t state type of event

0.12 (0, 1) Enter

• Execute Enter event at t = 0.12:

Increase Q by 1

Roll ta ← 1.20

Schedule Enter at t+ ta

Remove Enter from event list

t state type of event

0.12 (1, 1) Start
1.32 Enter

• Execute Start event at t = 0.12:

S ← S − 1, Q← Q− 1

Roll ts ← 0.93

Schedule Leave at 0.12 + 0.93

Remove Start from event list

t state type of event

1.05 (0, 0) Leave
1.32 Enter

• Execute Leave event at t = 1.05:

S ← S + 1

Since Q = 0, don’t schedule Start

Remove Leave from event list

t state type of event

1.32 Enter

Notes

• Always have an Enter in the list

• Usually quite after t greater than some �xed tend.
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Programming a DES

• The central object is event list.

• Each row of the event list is a time for an event and an event name.

• To run a DES, event list must be updated properly.

• The following �owchart outlines this procedure.
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Event Scheduling Flowchart

Initialize

State

Event list

Advance Clock to
Time of next event

Execute event

Change State

Cancel Events

Schedule Events

Remove event
from list

Stop?

Summary statistics

YES

NO
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Variation: Queue with limited capacity

Run

S ← 1
Q← 0

Enter

Q← Q+ 1(Q < B)

Start

S ← S − 1
Q← Q− 1

Leave

S ← S + 1

ta

∼

(S > 0)

ts

∼

(Q > 0)

ta

Two nonidentical servers in parallel

Run

S ← 1
Q← 0

Enter

Q← Q+ 1

Check

Start 1

S1← S1− 1
Q← Q− 1

Leave 1

S1← S1 + 1

Start 2

S ← S2− 1
Q← Q− 1

Leave 2

S2← S2 + 1

ta

∼
(S1 > 0)

∼

(S1 = 0, S2 > 0)

ts1

ts2

∼

(Q > 0)

∼

(Q > 0)

ta

Possible to extends DES further

• Can turn variables into arrays
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• Ex: S[1], . . . , S[k] for servers of k di�erent types

• Can pass parameters along on arcs
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Implementing DES in R

Question of theDayUse simulation to determine forG/G/1 queue with interarrivals
iid Unif([0, 2]), service times Unif([0, 1]), what is the average waiting time for a
customer.

Today

• Putting DES into R

DES Framework

1. Pull earliest event from event list

2. Execute the event

a) Update state
b) Schedue new events

3. Remove event from event list

4. If any events remain, go to step 1

[Go through DES.R code]

What do we want to know?

• What is the average queue length?

• What is idle/busy percentage?
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Example: Queue length

0 1.8 2.6 4

3

4

average length

Recall Average of f(t) over t ∈ [a, b] is:

average =

∫ b
a f(t) dt

b− a
.

In example:
1

4− 0
[3(1.8− 0) + 4(2.6− 1.8) + 3(4− 2.6) = 3.2.

Summary statistics

• Add variables to keep track of these things

• [Show extra statistics in DESstat.R]

# DESstat.r: R routines for discrete-event simulation (DES), with an example
# Written by: Mark Huber

# Data frame sim holds the event list

# MAIN DES LOOP

# main loop of the simulation
mainloop <- function(maxsimtime) {

time <- 0 # record original time
while((nrow(sim) > 0) & (sim[1,1] < maxsimtime)) {

# Now take the first event off of the event list and execute it
event <- sim[1,] # take first event
sim <<- sim[-1,] # drop the first event
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executeEvent(event) # execute the event

# update statistics and clock time
time <- min(sim[1,1],maxsimtime)
statistics["Average queue length"] <<- statistics["Average queue length"] +

(time - event$time)*((1-state["s"]) + state["q"])
statistics["Idle percentage"] <<- statistics["Idle percentage"] +

(time - event$time)*(state["s"] > 0)
}

}

# EXECUTE CODE

# The general code above needs an event processing function. So here it is!
executeEvent <- function(event) {

if (event$type == "RUN") {
sim <<- rbind(sim,data.frame(time = ta(),type = "ENTER"))

}
if (event$type == "ENTER") {

state["q"] <<- state["q"] + 1;
sim <<- rbind(sim,data.frame(time = event$time + ta(),type = "ENTER"))
if (state["s"] > 0)

sim <<- rbind(sim,data.frame(time = event$time,type = "START"))
}
if (event$type == "START") {

state["q"] <<- state["q"] - 1;
state["s"] <<- state["s"] - 1;
sim <<- rbind(sim,data.frame(time = event$time + ts(),type = "LEAVE"))

}
if (event$type == "LEAVE") {

state["s"] <<- state["s"] + 1;
if (state["q"] > 0)

sim <<- rbind(sim,data.frame(time = event$time,type = "START"))
}
sim <<- sim[order(sim$time),] # sort event list by times

}

# RANDOM VARIALBES

# Interarrival times Unif([0,2])
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#ta <- function() return(runif(n=1,min=0,max=2)) # interarrival times
# Service times Unif([0,1])
#ts <- function() return(runif(n=1,min=0,max=1)) # service times
ta <- function() return(rexp(n=1,rate=5/6))
ts <- function() return(rexp(n=1,rate=1))

# TO RUN SIMULATION

runsim <- function(maxsimtime){
# Initialize event list
sim <<- data.frame(time = 0.0, type = "RUN")
# Initialize state of the system
state <<- c(1,0)
names(state) <<- c("s","q") # 1 server, 0 in queue
# Initialize statistics for the system
statistics <<- c(0,0)
names(statistics) <<- c("Average queue length","Idle percentage")

# Run simulation
mainloop(maxsimtime)
statistics <<- statistics / maxsimtime
print(statistics,digits = 4)

}
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Stochastic Petri Nets

Question of the Day Can we build a simulation that can be analyzed completely?

Today

• Petri Nets

• Stochastic Petri Nets

Petri nets

• Invented by Carl Petri 1962

• Bipartite graph with two types of nodes: places and transititons

• Arcs run from place to transition, and transition to place.

• When a transition “�res”, it puts a token on the place it points to

• A transition needs all of its incoming places occupied to �re.

Example

• The black rectangle is a transition

• The circle is a place

• A token allows the transition to �re, putting a token on outgoing place.
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Uses

• Easier to write down mathematical description than DES

• State just number of tokens at each place

• Can ask questions like: What states are reachable from initial state?

• Great for inventory systems

Example

• A manufacturing station is combining the inside and case for a thumbdrive into the
�nished product

• Looks like this:

P1

P2

P3

• Next step
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• Next step

• Reachable states from (P1, P2, P3) = (0, 0, 0) are⋃
i{0,1,2,3,...}

{(1, 1, i)}

Timed transitions

• Extension: Can add a time to each transition

• Now the new token does not appear until a later time

• Transition cannot be reactivated until time expires

• Example: D/D/1 queue

2 P1 1

Stochastic Petri Nets

• Allow the timing for transitions to be random variables

• Example: G/G/1 queue

ta P1 ts
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Ties

• Doesn’t solve problem of ties

• Have to specify priority of transitions

Labeled arcs

• Suppose to build product requires two of one component and one of another

• Label arcs with number of tokens consumed (or produced)

P1

P2

P3

1

1

2 1

1

• How the Petri Net progresss:

(P1, P2, P3)

(0, 0, 0)
(1, 1, 0)
(2, 2, 0)
(1, 2, 1)
(2, 3, 1)
(1, 3, 2)
(2, 3, 2)

...

• Call a Petri Net k-bounded if the number of tokens in any place never exceeds k

• A 1-bounded Petri Net is called safe.

• Above example is not k-bounded: both P2 and P3 grow forever.

• Change: store product from P3
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• Change: If more than 4 in P2, store excess elsewhere

P1

P2

P3

1

1

2 1

1

1

5

4

Petri Nets Advantages

• Easy to visualize.

• Built in animation procedure.

• Can often prove that a Petri net is safe or at least k-bounded.

Petri Nets Disadvantages

• Have to keep track of which transitions active

• Have to check every transition to see which �re

• Large models can be slow to execute

Inhibitor arc (Optional)

• Works in the opposite fashion from regular arc

• If a token there, prevents transition from �ring

• Draw with a circle at arc tip
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ta1

ta2

P1

P2

P3 ts

• In this example, tokens in P2 have priority for service over tokens in P1
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How to make decisions

Question of the Day How should decisions be made?

Today

• Decision analysis

What do decide/herbicide/homocide have in common?

• cide comes from Latin caedere = “to cut”

• de comes from Latin for o�

• decide = to cut o� (possibilities)

Terminology

• Decision analysis is the problem of how best to select from a set of possible course of
action.

• State variables (state of nature) are things you cannot control

• Courses of action (decision variables) are things you can control

• The result of making a decision once state variables known is outcome or payo�

Payo� matrix:

decisions

state
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Example The �nal in the course might be easy or hard. Can choose to study or not
study:

Study Don’t Study
Hard Satisfaction Humiliation
Easy Wasted Time Relief

• Usually state variables are random

• [Only have partial information]

Utility

• First step in decision analysis is to assign utility to each outcome

• High utility means favorable outcome

• Low utility means despised outcome

• Note: monetary payo� can be rough substitute for utility

• But in general not the same!

• Utility di�erence in going from $0 to $100...

• ...much more than in going from $999 900 to $1 000 000

• This e�ect (�rst dollar has more utility than last dollar) called dimishing marginal
returns

money

utility

• Actions also called strategies
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De�nition 23
The strategic form of a decision problem is a triple (X,Ω, A) where

1. X is the nonempty set of strategies for the decider.

2. Ω is the nonempty set of states of nature.

3. A : (X × Ω)→ R is the payo� function.

Dominance

• Some decisions you never want to make

• Consider payo� matrix with X = {a1, a2, a3, a4} and Ω = {θ1, θ2, θ3}.

a1 a2 a3 a4

θ1 5 0 2 1
θ2 5 3 3 2
θ2 0 4 2 1

• Note that a3 always beats a4, no matter what the state of nature is!

• There is never a need to use a dominated strategy.

De�nition 24
For ai, aj ∈ X , say that ai dominates aj if

(∀θ ∈ Ω)(A(ai, θ) ≥ A(aj , θ)).

Ways to decide

• Pessimist: Maximin Find the minimum payo� over all states for each choice. Use
strategy than has the maximum minimum.

• For earlier example: worst outcome gives:

a1 a2 a3

0 0 2

• So the Maximin choice is a3, since that maximizes the minimum value

De�nition 25
The Maximin strategy is

arg max
a∈X

min
θ∈Ω

A(a, θ).
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Next strategy: Maximax

• The optimist takes a di�erent view

• First, �nd the largest payo� from each possible strategy

• Take the choice that maximizes the largest payo�

• For example:

a1 a2 a3

5 4 3

• Choice that maximizes is: a1

De�nition 26
The Maximax strategy is

arg max
a∈X

max
θ∈Ω

A(a, θ).

Laplace: Principle of insu�cient reason

• Suppose you know nothing about a situation

• It this case, reasonable to use a uniform distribution

• Assume each state equally likely: θ now a random variable

• More recently: call this a Bayesian approach with noninformative prior

• Choose strategy that maximizes expected utility

• Example problem:

E(A(a1, θ)) = (1/3)(5) + (1/3)(5) + (1/3)(0) = 10/3.

In general:

a1 a2 a3

10/3 6/3 6/3

• Go with strategy a1

De�nition 27
The principle of insu�cient reason chooses

arg max
a∈X

∑
θ∈Ω

A(a, θ).
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Hurwicz Principle (Degree of optimism) Linear convex combination of optimist and
pessimist

De�nition 28
For α ∈ (0, 1), the Hurwicz principle is

arg max
a∈X

[
αmax
θ∈Ω

A(a, θ) + (1− α) min
θ∈Ω

A(a, θ)

]
.

• Note: α = 0 is maximin

• α = 1 is maximax

• α ∈ (0, 1) something in between

• Decision can change with α

• Continuing example:

a1 a2 a3

5α 4α 3α+ 2(1− α) = α+ 2

• 5α ≥ 4α,
5α ≥ α+ 2⇔ α ≥ 1/2.

• For α ∈ [0, 1/2], decision a3

• For α ∈ [1/2, 1], decision a1

• Can eliminate α2
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Statistical decision making

Question of the Day How to make decisions in light of partial information?

Today

• Savage regret

• Bayesian approach

Regret

• The regret is the di�erence between what you get as payo� and best payo�

• Example:

Payo� Matrix
a1 a2 a3

θ1 5 0 2
θ2 5 3 3
θ2 0 4 2

Regret Matrix
a1 a2 a3

θ1 0 4 1
θ2 0 1 0
θ2 5 0 1

• Therefore, maximum regret is:

a1 a2 a3

5 4 1

• Decision which minimizes regret is: a3

De�nition 29
The Savage regret decision is

arg min
a∈A

[
max
θ∈Ω

A(a, θ)−min
θ∈Ω

A(a, θ)

]
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Using partial information

• All decisions so far do not use any info about state of nature.

• Often know the prob. dist. of θ.

Study Don’t Study
Final is Hard 8 2
Final is Easy 6 10

Sun explodes 0 12

• Laplace: (1/3, 1/3, 1/3) prob. vector for states

• Maybe (just maybe) should have slightly lower than 1/3 chance for sun exploding.

• Maximin: makes P(worst option) = 1.

• But P(sun exploding) 6= 1.

• Decision: must do “Not Study”

• Also fails row linearity:

– If you add a constant to a row, it should not a�ect decision
– Add -3 to �rst row

Study Don’t Study
Final is Hard 5 -1
Final is Easy 6 10

Sun explodes 0 12

– New minimum:
S NS
0 -1

– New decision: a1

Expected Utility Hypothesis

• Goes back to Daniel Bernoulli 1738

• Satis�es row linearity

• More general than Laplace

• Idea:
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1. Assign a probability to each state indicating partial information individual has
about the likelihood
[Called a prior distribution]

2. Calculate the expected payo� from each decision
3. Choose the decision that maximized utility

• Example: If 60% chance �nal is hard, 40% − ε that it is easy, and ε chance Sun
explodes

E[payo�|Study] = (0.6)(8) + (0.4− ε)(6) + ε(0) = 7.2− 6ε.

S NS
7.2− 6ε 5.2 + 2ε

• So for small ε, should Study.

Row linearity

• Suppose add C to a row that occurs with probability pi.

• Adds piC to each of the mean payo�s (regardless of decision)

• Does not change max expected payo� decision

Does this work

• 1947: John von Neumann and Oskar Morgenstern

• Gave 4 axioms that if true for an individual...

• ...must be a utility function

• Individual should prefer strategy that maximizes expected utility

Notation

• Call a decision with options a lottery

• Another way to state: a lottery is just a probability distribution on outcomes

• Example: Ω = {ω1, ω2, ω3} lottery L = (1/3, 1/2, 1/6) gives PL(ω1) = 1/3

• So a lottery is a vector p whose entries add up to 1

• Also called the probability simplex.

• For lotteries L, M say:
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– L = M if the actor is indi�erent to the playing lottery L or M : this does not
necessarily mean the probability vectors are equal!

– L ≺M if actor prefers lottery M to L
– For p ∈ [0, 1], let N = pL+ (1− p)M be the lottery where the agent has a p

chance of getting to play L and and 1− p chance of getting to play M .
– Lotteries form a convex set

Axioms of Utility Theory (vN-M Axioms)

De�nition 30
The von Neumann-Morgenstern Axioms are:

1. Completeness: For all lotteries L and M exactly one of the following is true:

L ≺M,L = M, or M ≺ L.

2. Transitivity: If L �M , M � N , then L � N .

3. Continuity: If L �M � N , there exists a p ∈ [0, 1] such that

pL+ (1− p)N = M.

4. Independence If L ≺M , then for any lottery N and p ∈ (0, 1],

pL+ (1− p)N ≺ pM + (1− p)N.

Theorem 3 (Von Neumann-Morgenstern Utility Theorem)
A complete and transitive preference relation � on a �nite set of lotteries satis�es
continuity and independence if and only if there is a random variable U such that for all
lotteries L and M :

L ≺M ⇔ EL[U ] < EM [U ]

L = M ⇔ EL[U ] = EM [U ].

Another way to state it: these four axioms characterize when the expected utility
hypothesis holds.

Shape of the utility curve

• Straight line

– 1st dollar exactly as valuable as millionth dollar.
– Useful model when money of outcomes small compared to net worth
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• Risk Averse (RA)

– Shape concave (convex down)
– Avoids big risks
– Typical function when outcomes comparable to net worth

• Risk Seeker (RS)

– Shape convex (convex up)
– Millonth dollar worth more than 1st dollar
– Trying to be �rst to reach a milestone
– Going for the big score
– Monopoly will often behave this way
– Venture capitalists
– “With $100,000, I could open a restaurant!”

• Kahneran & Tversky 1979 designed experiments to see what participants curve
looked like

• Found they could alter the curve by rephrasing the question.
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Decision Trees

Question of the Day Archytas Electronics must decide whether to build a new tablet.
The product is expected to have a demand that is either high, low or medium. Since
the money involved is small relative to the earnings of the company, utility is just
taken to be money here. If the tablet is not built, the company loses nothing. But if it
is built, then

Demand
Good Moderate Bad

Probability 20% 70% 10%
Payo� $1 000 000 $500 000 $-500 000

Decision Trees

• Often, decisions involve seuqences of simple decisions

• A decision tree keeps track of the di�erent possibilities

• Three di�erent type of branches:

1. Decision fork (representd by a square) is a place where decision maker makes
a decision

2. Chance fork (represented by a circle) is a place where the state of nature
determined

Example

• Archytas Electronics must decide whether to build a new tablet. The product is
expected to have a demand that is either high, low or medium. Since the money
involved is small relative to the earnings of the company, utility is just taken to be
money here. The decision tree looks like:
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Launch
Tablet

Don’t Launch
Tablet

$0

Good 20% $1,000,000

Mod 70%
$500,000

Bad 10% -$500,000

= decision

= random outcome

• Should the tablet be launched?

• Only one decision to make.

• If Launch, expected payo�:

(20%)(106) + (70%)(0.5 · 106) + (10%)(−0.5 · 106)

= 106(0.2 + 0.35− 0.05)

= (0.5)106 > 0

• Decision is to launch the product!

To analyze decision trees

1. Replace random outcomes at leaves of tree with expected value

2. Take decision which maximizes expected value

3. Repeat if necessary

Example Suppose the decision tree looks like:
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60% 4

40%
2

20%

70% 3

10% -1

3

50%
2

50%
0

• Replace random outcomes in leaves with expectation:

(50%)(2) + (50%)(0) = 1

(60%)(4) + (40%)(2) = 3.2
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3.2

20%

70% 3

10% -1

3

1

• Now consider the decision in the upper right: each outcome of the decision is a
number, take the decision that maximizes the value

• In this case, “up branch” for 3 utility.

3.2

20% 3

70% 3

10% -1
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• Again trim by �nding expectation:

(20%)(3) + (70%)(3) + (10%)(−1) = 2.6

2.6

3.2

• Now the �rst decision is easy: take the “down branch”

• Any decision tree can be simpli�ed using this approach!
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More VN-M Utility Theorem

Question of the Day How is the VN-M Utility Theorem proved?

Today

• Proving vN-M Utility Theorem

• Examples

Axioms of Utility Theory (vN-M Axioms)

1. Completeness: For any lottery L and M exactly one of the following is true:

L ≺M,L = M, or M ≺ L.

2. Transitivity: If L �M , M � N , then L � N .

3. Continuity: If L �M � N , there exists a p ∈ [0, 1] such that

pL+ (1− p)N = M.

4. Independence If L ≺M , then for any lottery N and p ∈ (0, 1],

pL+ (1− p)N ≺ pM + (1− p)N.

Theorem 4 (Von Neumann-Morgenstern Utility Theorem)
A complete and transitive preference relation � on a �nite set of lotteries satis�es
continuity and independence if and only if there is a random variable U such that for all
lotteries L and M :

L ≺M ⇔ EL[U ] < EM [U ]

L = M ⇔ EL[U ] = EM [U ].
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Proof: Utility implies axioms. Suppose such a utility function/random variable U exists.
Let L �M � N . If L = N then any p ∈ [0, 1] satis�ed the equation. If L ≺ N let

p =
EN [U ]− EM [U ]

EN [U ]− EL[U ]
.

L ≺ N means the denominator is not zero, and L �M � N gives p ∈ [0, 1].
Note

EpL+(1−p)N [U ] =
∑
ω∈Ω

[pPL(ω) + (1− p)PN (ω)]U(ω)

= pEL[U ] + (1− p)EN [U ]

= EN [U ]− p(EN [U ]− EL[U ])

= EM [U ]

Hence M = pL+ (1− p)N and continuity is satis�ed.
For independence: suppose L ≺M , so EL[U ] < EM [U ]. Then

EpL+(1−p)N [U ] = pEL[U ] + (1− p)EN [U ] < pEM [U ] + (1− p)EN [U ]

= EpM+(1−p)N [U ].

The other direction is more di�cult! Need to understand a�ne functions.

A�ne transformations

De�nition 31
A function f is a�ne if for all vectors x and y and λ ∈ [0, 1],

f(λx+ (1− λ)y) = λf(x) + (1− λ)f(y).

Example: f(x) = 3x− 2. Then

f(λx1 + (1− λ)x2) = 3(λx1 + (1− λ)x2)− 2(λ+ (1− λ))

= λ(3x1 − 2) + (1− λ)(3x2 − 2)

= λf(x1) + (1− λ)(x2)

Fact 20
Suppose U is a utility function. Then so is U ′ = aU + b where a, b ∈ R and a > 0.

[Any a�ne transformation of U is also a utility function.]
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Proof. Since a > 0, U ′ is an increasing function of U , so maintains the same ordering.
Suppose

EpL+(1−p)N [U ] = EM [U ].

Then

EpL+(1−p)N [U ′] = EpL+(1−p)N [aU + b]

= aEpL+(1−p)N [U ] + b

= aEM [U ] + b = EM [aU + b] = EM [U ′]

so continuity is preserved.

Turns out that all utility functions are a�ne transformations of each other!

Fact 21 (Mixture Space Theorem, Herstein and Milnor)
A preference relation � on Π is independent and continuous if and only if there exists
an a�ne utility representation U : Π→ R of �.

Moreover, if U : Π→ R is an a�ne representation of�, then U ′ : X → R is an a�ne
representation of � i� there exist a > 0 and b ∈ R such that U ′ = aU + b.

See the appendix for a proof.
One more small fact:

Fact 22
Suppose f is a�ne and p1, . . . , pn add up to 1. Then for x1, . . . , xn,

f(p1x1 + · · ·+ pnxn) =
n∑
i=1

pif(xi).

Proof. When n = 2, this is just the de�nition of a�ne! So use induction on n.
Base Case: n = 1, this gives a tautology.
Induction hypothesis: assume true for n, consider n + 1. Let λ = p1 + · · · + pn and

y = (p1x1 + · · ·+ pnxn)/λ. Then

f(λy + (1− λ)xn+1 = λf(y) + (1− λxn+1) (a�ne)

= λ

n∑
i=1

pi
λ
xi + (1− λ)xn+1 (induction)

=

n+1∑
i=1

pixi,

which completes the induction.

Proof: Axioms imply utility (Part II). Collecting our facts:
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• Let Π denote the set of lotteries (probability distributions over outcomes)

• By the Mixture Space Theorem, there is an a�ne function U that represents �.

• For ω ∈ Ω, call the Dirac delta lottery the lottery δ(ω) where P(ω) = 1.

• Let V (ω) = U(δ(ω)).

• Let L be any lottery, then note

L =
∑
ω

L(ω)δ(ω).

where
∑

ω L(ω) = PL(Ω) = 1.

• Then since U is a�ne,

U(L) = U

(∑
ω

L(ω)δ(ω)

)
=
∑
ω

L(ω)U(δ(ω)) = EL(V ).

• Hence V is a utility representation.
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Psychology of decision making

Question of the Day What the common decision making mistakes?

Today

• Zero Illusion

• Allais Paradox

• Gambler’s Fallacy

• Anchoring

• Adjustment

• Sunk cost Fallacy

Zero Illusion

• Often people have �nancial target of breaking even

– “Must balance the budget”
– Debt viewed as always bad
– Savings are not “extra money”
– leads to a utility curve:

RS

RA
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• Counters:

– Understand that 0 is just another number, nothing special
– Rescale or shift problem to move away from 0

Allais paradox

• Consider two lotteries

Lottery 1A 100% win $1 million
Lottery 1B 89% win $1 million, 1% win nothing, 10% win $5 million

• 1987 study of Machina: people prefer Lottery 1A

• Now change the lotteries:

Lottery 2A 89% win nothing, 11% win $1 million
Lottery 2B 90% win nothing, 10% win $5 million

• Same study: people prefer Lottery 2B

• Problem: this is inconsistent

Why inconsistent?

• Consider a function U .

• Then 1A > 1B implies E1A[U ] > E1B[U ]:

E1A[U ] = U(1) > 0.89U(1) + 0.01U(0) + 0.1U(5) = E1B[U ].

• Now let’s play with E2A < E2B[U ]:

E2A[U ] = 0.89U(0) + 0.11U(1) < 0.9U(0) + 0.1U(5) = E2B[U ]

• Add 0.89U(1)− 0.89U(0) to both sides:

U(1) < 0.89U(1) + 0.01U(0) + 0.1U(5)

What’s going on?

• Comes back to regret: 11% $1 million < 10% $5 million when likely to get nothing
anyway.

• 11% $1 million > 10% $5 million when likely to get something anyway.

• Under expected utility, should treat 1% chance $0→ $1 for 10% chance $5 for $1 the
same way regardless of what happens in the other 90%.
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Gambler’s Fallacy

• Flip a fair coin heads 40 times in a row

• P(next �ip heads) = 1/2

• Gambler’s Fallacy: we are “due” for a tail.

• By the way, don’t pick 1,2,3,4,5,6 for lottery numbers.

• You would hate to split the lottery with 10 other self-satis�ed people.

• Pick numbers above 30 to avoid dates.

• Reverse Gambler’s Fallacy: bubbles

Anchoring

• Initial assessment/information biases behavior

• Milliken was �rst to measure charge on an electron

• If other experimenters independent, would be just as likely to be above true answer
as below.

• Instead, see more like a limit

time time

×

True
answer

Millikan

×

Millikan

×

×
× ×

×
×

× ×

• Doesn’t take overt planning: just throw out “outliers” that move the mean closer to
the old average.
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Tvesky & Kahneman 1982 Experiment

– Rolled a number X uniform over {1, 2, . . . , 100}
– Asked participants: Consider percent of African countries are members of the

U.N., is it X percent?
– Found that people would bias their guess towards the garbage number

Be aware

• Anchoring to expert opinion

• Anchoring to mean

Sunk Cost Fallacy

• Start a project, invest X dollars

• At current time, to complete project, need Y more dollars

• Should the project be completed?

• Answer should only depend on Y , not on X

• Decision should ony depend on future utility, not how much spent

• Easy to think that the amount already put in matters

• Seen in:

– Military con�icts
– Large scale real estate projects
– Majors

Really smart people fall for this

• Newton: South Sea Tulip Bubble

• D’Alembert (Wave Equation) Gambler’s Fallacy

• Leibniz thought 12 and 11 were equally likely on sum of two dice
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Expected value of perfect information

Question of the Day Suppose that the economy is expected to be hot, neutral, or
cold over the next year. A investor is considering two stocks, or the money market.
The payo� matrix is:

Payo� Matrix
Stock 1 Stock 2 MM

hot 2000 900 600
neutral 200 300 600

cold -600 -200 600

Given a prob vector for the market of (40%, 30%, 30%), how much should the investor
pay in order to see the future?

Today

• Expected value of perfect information

De�nition 32
Let U be the utility gained by making an optimal decision. Let W (I) be the optimal
utility gained given the knowledge of some information encoded in I . The expected
value of perfect information is

E[W (I)]− E[U ],

the expected amount that having the information in I increases the utility of the optimal
decision.

To �nd EVPI

1. Find mean utility with no info.

2. Find mean utility with info.

77 184



Mark Huber Notes on Stochastic Operations Research

3. Subtract 1 from 2

Question of the day:

• First �nd mean utility

• Three investments:

E[U1] = 2000(0.4) + 200(0.3)− 600(0.3) = 680

E[U2] = 900(0.4) + 300(0.3)− 200(0.3) = 390

E[U3] = 600.

• So with no information, optimal decision to pick Stock 1.

• What is optimal decision with information?

• If the economy is hot: Stock 1, if neutral or cold, MM

E[W (I)] = E[E[W (I)|I]]

= E[2000 · 1(I = hot) + 600 · 1(I = cold)]

= 2000(40%) + 600(60%) = 1160.

• So in this case, EVPI = 1160 - 680 = 480.

What does this mean?

• EVPI measures the expected value of reducing uncertainty

• In this case, if fortune teller could tell you what the market was going to do, you
should be willing to pay up to 480 to learn the answer

• Gives a way of measuring the important of various pieces of information.

A continuous example

• (Winston 1991, p. 718) Cards Inc. belives the # of a new type of card sold (call it S)
to be normal with mean µ (unknown) and variance 100. There is a �xed cost of $57
to introduce the card, and they make 0.60 per card sold. What is the EVPI for µprior?

So far

• State of nature is discrete

• Often parameters are continuous

• Cannot draw decision tree
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Model

• Need continuous prior for µ, σ

– How to get such a prior?
– One method: µ ∼ N(µprior, σ

2
prior)

– Overall model: (Use S for sales of the card)

µ ∼ N(µprior, σ
2
prior)

S|µ ∼ N(µ, 100).

– This is called a hierarchical model

– Get µprior, σ2
prior by asking experts.

Eliciting µprior, σprior

• Could ask questions like:

– What are average sales like?
– What is a value k such that 50% of time sales are within k of average? (Easier

for most to understand than standard deviation.)

• Example: Answers are µprior = 100, k = 10

• So what’s µprior?

• Consider a standard normal. P(Z ≤ 0.674898) = 75%:

0.67-0.67

50%
25%25%

µ ∼ N(100, σ2
prior)

Z =
µ− 100

σ
∼ N(0, 1)

P(µ ≤ 110) = 75% so
P(Z ≤ (110− 100)/σ) = 75%.

Hence
110− 100

σ
= 0.674898⇒ σ =

10

0.674898
≈ 14.82.

79 184



Mark Huber Notes on Stochastic Operations Research

Recall

• Bayesian decision making priciple:

Make the decision that maximizes expected utility

• (Small dollar amounts = utility)

• Let P be pro�t

• Don’t make card, P = 0. Do make card:

E[P ] = E[−57 + 0.60S]

= E[E[−57 + 0.60S|µ]]

= E[−57 + 0.60µ]

= −57 + 0.60(100) = 3.

• So proper (Bayesian) decision: should make the card!

Expected Value of Perfect Information

• What if we know µprior before hand?

• If µprior = 95, Eµ=95[P ] = −57 + 0.60(95) = 0

• If µprior > 95, Eµ>95[P ] = −57 + 0.60µ > 0

– Make the card

• If µprior < 95, Eµ>95[P ] = −57 + 0.60µ < 0

– Don’t make the card

• Call 95 the breakeven point for µ

• W (µ) = 1(µ ≥ 95)(−57 + 0.60µ)

E(W (µ)) =

∫ ∞
−∞

1(u ≥ 95)(−57 + 0.60u)
1√

2π · 14.822
exp

(
−(u− 100)2

2 · 14.822

)
du

=

∫ ∞
95

(−57 + 0.60u)
1√

2π · 14.822
exp

(
−(u− 100)2

2 · 14.822

)
du

≈ 5.24876.

• Hence the EVPI is about $5.24876 - $3 = $2.248 .
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Framing and a two-envelope problem

Question of the Day Suppose two envelopes contatins 2 di�erent positive amounts
of money. You are allowed to look inside one envelope, then either keep it or switch
to the other. Is there a way to choose the envelope with more money more than 1/2
of the time?

Today

• Framing

• Two envelopes

Framing

• Extends the Zero Illusion

• People tend to avoid risk when outcomes good

– “A bird in the hand is worth two in the bush”

• People embrace risk when outcomes bad

– “He who hesitates is lost”
– “In for a penny, in for a pound”

Example

• Suppose disease has two treatments

• Treat A: 200 people saved w/ prob 1

• Treat B: 600 people saved w/ prob. 1/3, 0 w/ prob 2/3

• Most doctors go for A: sames expected value, lower risk.
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Reframed example:

• Treat A: 400 people die w/ prob. 1

• Treat B: 600 people die w/ prob. 2/3, 0 people die w/ prob. 1/3

• Now most doctors go for B

This e�ect used a lot in marketing

• 2-week trial w/ money back gaurantee

• Discount for cash: rarely say surcharge for credit

Also can a�ect happiness with outcome

• Movie Theater promotion

– June wins $100 for being the millionth customer

• Movie Theater promotion

– Betty wins $10 000 for being the millionth customer
– Mike wins $1 000 for being 1, 000, 001 customer

• Which is happier, June or Mike?

How to neutralize framing e�ect

• In surveys, ask questions in random order

• Try to give both good and bad outcomes

– Treat A: 400 die and 200 live
– Treat B: 600 die and 0 live w/ prob 2/3, 0 die and 600 live w/ prob 1/3

Other approaches to minimizing irrational behavior

• Make target aware of biases

• Feedback from results of model

• Redundant questioning

• Don’t let humans decide (linear regression routinely outperforms experts
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Two envelope problem

• Money in one is x

• Money in other is y > x

• Allowed to look in one envelope and see amount of money

• Which envelope should you pick?

• Turns out you can always do better than 50%!

Procedure Start with a probability density f that is positive over [0,∞), like Exp(1) or
|N(0, 1)|.

1. Look in random envelope, call result A

2. Draw B ∼ f

3. If B ≤ A, keep the envelope with A, otherwise switch.

What is the chance that you end up with the good envelope?

• Ways to win:

– Pick y, choose B ≤ y.
– Pick x, choose B > x.

• Total chance:

(1/2)

∫ y

0
f(s) ds+ (1/2)

∫ ∞
x

f(s) ds

= (1/2)

∫ y

0
f(s) ds+ (1/2)

∫ y

x
f(s) ds+ (1/2)

∫ ∞
y

f(s) ds

= (1/2) + (1/2)

∫ y

x
f(s) ds.

• Since y > x and f(s) > 0, this second term is positive!

• Note: If y = x, then 100% chance of picking the good envelope!
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Two envelope paradox

• Now suppose that you know that y = 2x, so the envelopes contain x and 2x

• Say you look inside and see $1000

• Then you know the other envelope has $500 or $2 000

• Since each are equally likely, if you pick the other envelope:

E(switch) = (1/2)500 + (1/2)2000 = 1500.

• So you should always switch

• But that argument works no matter what amount you saw in the envelope!

• So we can switch without even seeing what’s in the envelope!

Solving the paradox

• No one accepted solution

• One problem: it is not equally likely to have $500 or $2000

• The envelops either were (500, 1000) or (1000, 2000), but who said they had to be
equally likely?

• Need a model for how the initial x was decided.

• Example: Suppose X ∼ Geo(1/3), for i ≥ 1, P(X = i) = (2/3)i−1(1/3).

• Let N be amount seen, M be amount in other envelope

• Suppose see N = 4. What is distribution of M?

P(M = 2|N = 4) =
P(M = 2, N = 4)

P(N = 4)

=
P(X = 2)(1/2)

P(X = 2)(1/2) + P(X = 4)(1/2)

=
(1/3)(2/3)(1/2)

(1/3)(2/3)(1/2) + (1/3)(2/3)3(1/2)

= 2 · 32/[2 · 32 + 8] = 18/26 = 9/13 ≈ 69.23%/

• So E[switch] = (2)(9/13) + (8)(4/13) = 40/13 < 4

• Don’t switch!
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• Suppose see N = 2, then

P(M = 1|N = 2) =
1

1 + (2/3)
=

3

5
= 60%,

so
E[switch] = (4)(0.4) + 1(0.6) = 2.2 > 2.

• So with this model switch when N = 2 (or N = 1), but don’t switch if N is larger!
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Creating utility functions to test beliefs

Question of the Day Consider the multiple choice question:

What is the capital of Louisiana?

a) New Orleans
b) Bon Temps
c) Baton Rouge
d) Lousiannaville

How can true beliefs about answer be elicited?

Today

• Building utility functions to discover beliefs

Multiple choice questions

• Common payo� function:

payo�(answer) = 1(answer is correct).

• Suppose my information/knowledge is:

a) 50%, b) 20%, c) 15%, d) 15%.

Payo� Matrix
a b c d

a 1 0 0 0
b 0 1 0 0
c 0 0 1 0
d 0 0 0 1

• To maximize expected return, choose a
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Sharing knowledge

• Suppose I let you spread 1 unit over a), b), c), d)

• One answer:
a) 30%, b) 40%, c) 10%, d) 20%.

or more compactly:
m = (0.3, 0.4, 0.1, 0.2)

Expected payo� is:

(0.5)(0.3) + (0.2)(0.4) + (0.15)(0.1) + (0.15)(0.2) = 0.275.

• Put 1 on a), expected payout 0.5

• So best option still to put one unit on a)

What if I change the payo�?

• Suppose payo�(answer) =
√
m(correct).

• So (since a is correct):

f((0, 0, 1, 0)) = 1 point
f((1/2, 0, 1/2, 0)) =

√
1/2 point

• But what if no true answer, just prior beliefs p?

• Expected payo� given beliefs p = (0.5, 0.2, 0.15, 0.15):

Ep[f(0.6, 0.4, 0, 0)] = (0.5)
√

0.6 + (0.2)
√

0.4 = 0.5137 . . .

Ep[f(1, 0, 0, 0)] = (0.5)
√

1 = 0.5.

• So (0.6, 0.4, 0, 0) better choice than (1, 0, 0, 0)

Maximization

• What is the best choice of m?

maximize Ep[f(m)] =
∑n

i=1 pi
√
mi

subject to m1 +m2 + · · ·+mn = 1
mi ≥ 0

• Nonlinear optimization
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• Continuous function over closed, compact set, global max must exist

• Easy to see if pi = 0, optimal solution has mi = 0, so assume all pi > 0.

• Lagrange multipliers?

– Lagrange requires continuous �rst partial derivatives on open set containing
gi(m) = 0

– But
√
m(i) not even de�ned for m(i) < 0

• Because objective function is of form
∑

i g(mi) can concentrate on two components:

maximize pi
√
mi + pj

√
mj

subject to mi +mj = c c ∈ [0, 1]
mi ≥ 0, mj ≥ 0

• Maximum either mi = 0, mi = c, or somwhere in between

• Let f(a) = pi
√
a+ pj

√
c− a

• Then f ′(a) = (1/2)pi/
√
a− (1/2)pi/

√
c− a

• Let a∗ = c

[
1 +

p2j
p2i

]−1

.

• Solving f ′(a∗) = 0 gives:

a∗ = c

[
1 +

p2
j

p2
i

]−1

= cp2
i (p

2
i + p2

j )
−1

That makes
c− a∗ = cp2

j (p
2
i + p2

j )
−1,

so

f(a∗) = pi

√
cp2
i (p

2
i + p2

j )
−1 + pj

√
cp2
j (p

2
i + p2

j )
−1

=
√
c[(p2

i + p2
j )(p

2
i + p2

j )
−1/2 =

√
c
√
p2
i + p2

j .

The max occurs either at the boundary or at a critical point:

a f(a)

0 pj
√
c

a∗
√
c
√
p2
i + p2

j

1 pi
√
c
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Since pi and pj are nonegative, the max value is

f(a∗) =
√
c(p2

i + p2
j ).

Hence a maximum value is found at

mi =
(mi +mj)p

2
i

p2
i + p2

j

, mj =
(mi +mj)p

2
j

p2
i + p2

j

,

or equivalently:
mi

mj
=
p2
i

p2
j

.

• Apply to m1,m2 to get:

m2 = m1(20/50)2, m3 = m1(15/50)2, m4 = m1(15/50)2.

• Since m1 +m2 +m3 +m4 = 1,

m∗1 =
1

1 + (20/50)2 + (15/50)2 + (15/50)2
=

100

134
.

So
m∗ =

(
100

134
,

16

134
,

9

134
,

9

134

)
.

Getting right probabilities

• Note m∗ closer to true probabilities

• But not quite right

• Q: is there a utility function where the best answer is to give correct probabilities?

• A: YES! Payo� = ln(m(correct answer))

• We’ll see why next time
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Shannon Entropy

Question of the Day Suppose you assign m1, . . . ,mn to choices {1, . . . , n}. If c is
the correct answer, you receive reward

r(mc).

Given beliefs p about the true answer, is there a way to choose r so that

arg max
m

Ep[r(mc)] = p

subject to m1 + · · ·+mn = 1?

Today

• Making probabilities maximize utility

• Shannon Entropy

Last time

i P(c = i)

1 50%
2 20%
3 15%
4 15%

For r(α) =
√
α,

m∗ =
1

p2
1 + · · ·+ p2

n

(p2
1, p

2
2, . . . , p

2
n).

Q of the D

• Is there a way to choose r so that the probability vector for c maximizes expected
utility?
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Theorem 5
Suppose c has probability vector p with positive entries. The solution to

m∗ = arg maxEp(ln(mc)) subject to m1 + · · ·+mn = 1

is m∗ = p.

Example

• Student gives (0.2, 0.6, 0.1, 0.1) for multiple choice (a, b, c, d).

• If answer a is correct, gets reward ln(0.2) = −1.60944

• Best reward possible is 0 for (1, 0, 0, 0)

• Treating ln(0) = −∞, reward for (0, 0.6, 0.2, 0.2) is minus in�nity! (Instant Flunk!)

• Theorem says: way to maximized expected utility is to report (0.2, 0.6, 0.1, 0.1)

Proof. Let f(m) = Ep(ln(mc)) =
∑n

i=1 pi ln(mi).
Then limm1→0 → −∞. In particular, there exists ε such that f(m) <

f(1/n, 1/n, . . . , 1/n) for mi < ε. Hence we can restrict our search to m : mi ≥ ε
for all i.

Since f(m) is continuous over a closed, compact set, there exists a global maximum
and a global minimum. Consider a point m in the region. Suppose mi + mj = k. Now
consider trying to maximize

g(mi) = pi ln(mi) + pj ln(mj) = pi ln(mi) + pj ln(k −mi)

over mi ∈ [0, k]. Di�erentiating g(mi) with respect to mi gives:

g′(mi) = pi/mi − pj/(k −mi)

which is positive for mi < kpi/(pi + pj), zero for mi = kpi/(pi + pj), and negative for
mi > kpi/(pi + pj).

Hence there is a unique maximum at mi = kpi/(pi + pj). Since k = mi +mj ,

mi =
(mi +mj)pi
pi + pj

⇒ mi = mjpi/pj .

Since i and j where arbitrarly, this means any maximum solution must have

mi = m1pi/p1.

Since m1 +m2 + · · ·+mn = 1,

m1

[
p1

p1
+
p2

p1
+
p3

p1
+ · · ·+ pn

p1

]
= 1

which means m1 = p1/[p1 + · · · + pn] = p1, and mj = p1pj/p1 = pj for all j ∈
{1, . . . , n}.
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Notes

• For α ∈ (0, 1], ln(α) ≤ 0, reward always nonpositive

• Can extend to mi = 0 by saying ln(0) = −∞ (maximum negative reward.

Shannon Entropy

• Measures how spread out a probability distribution is
De�nition 33
Suppose that X is a discrete random variable. The Shannon Entropy of X is

H(X) =
∑

i:P(X=i)>0

− log2(P(X = i))P(X = i).

• High entropy = low information, low entropy = high information

Example: total information

• Suppose X = 5 with probability 1.

• Then H(X) = − log2(1) · 5 = 0.

• H(X) = 0 for any constant random variable

Example: Spread out over {1, . . . , n}

• Suppose X ∼ Unif({1, . . . , n}

• Then H(X) =
∑n

i=1− log2(1/n)(1/n) = log2(n)

• Re�ects fact that a number from {1, . . . , n} requires log2(n) bits to encode.

Example: one bit

• Suppose X ∼ Bern(p)

• H(X) = − log2(p)p− log2(1− p)(1− p)

• limp→0H(X) = limp→1H(X) = 0

• When p = 0 or p = 1, total information

• H(X) maximized when p = 1/2, least information about bit
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iid r.v’s

Fact 23
Suppose X1, X2, . . . , Xn are independent random variables. Then
H(X1, X2, . . . , Xn) = H(X1) +H(X2) +H(X3) + · · ·+H(Xn).

Proof. It is easier to start with two independent random variables:

H(X1, X2) =
∑

(x1,x2)

− log(P(X1 = x1, X2 = x2))P(X1 = x1, X2 = x2)

=
∑

(x1,x2)

− log(P(X1 = x1)P(X2 = x2))P(X1 = x1)P(X2 = x2)

=
∑

(x1,x2)

[− log(P(X1 = x1)− log(X2 = x2)]P(X1 = x1)P(X2 = x2)

=

[∑
x1

− log(P(X1 = x1))P(X1 = x1)

][∑
x2

− log(P(X2 = x2))P(X2 = x2)

]
= H(X1)H(X2)

The general case for n > 2 then follows from an induction.

Practical consequences

• Shannon Entropy tells how hard it is to compress information

– iid coin �ips cannot be compressed
– Suppose know pairs of bits are always 01 or 11

Example: 0111110101

– Compression: map 01 to 0, 11 to 1,

Example: 0111110101→ 01100

– Compressed by a factor of 2!

• Security of passwords

– Most secure password: uniform among 8 letters (268 combinations)
– Less secure if half the time you use the word “password”
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Alphabet notation

• Superscript ∗ on a set indicates all �nite words producible using letters from the set.

• Ex: A = {a, b, c}, cbba ∈ A∗, abbbccba ∈ A∗, adb /∈ A∗.

Theorem 6 (Shannon source coding Theorem (1948))
Let A1, A2 be two �nite alphabets. Suppose that X is a r.v. taking values in A1, and f is
any uniquely decodable code from A1 to A2. Let Sf be the word length of f(X). Then

H(X)

log2(#A2)
≤ E[Sf ].

Moreover, there exists a code f∗ such that

E(Sf∗) <
H(X)

log2(#A2)
+ 1.

Uniquely decodable

• Consider f1 : a 7→ 0, b 7→ 01, c 7→ 011

• Given sequence 01101010110001, can recover unique cbbcaab

• Say f1 is unique decodable.

• Consider f2 : a 7→ 0, b 7→ 01, c 7→ 10

• Given sequence 01001 is it acb or bac?
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Game Theory

Ben Polak, Game Theory (Yale University: Open Yale Courses), http://oyc.yale.edu
(Accessed 24 Jan, 2014). License: Creative Commons BY-NC-SA

Question of the Day Suppose you are randomly paired with another student in the
class. Each of you secretly writes down either α or β. The payo�s are as follows:

• If you put α, other β, you get an A, other gets a C .

• If both put α, both get B−.

• If you put β, other α, you get C , other gets a C .

• If both put β, both get B+.

What should a rational person do?

Today

• Game Theory (interactive decision theory)

What is game theory

• Decision theory is decider versus nature

• Game theory is decider versus another decider

• That makes things interesting!

• Earlier: nature �xed

• Now other can cooperate or compete

• Economics, political science, psychology, ecology
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Similarities to decision theory

• Have outcome (me,other) matrix

other
α β

me α (B−, B−) (A,C)
β (C,A) (B+, B+)

• What should a player do?

• Depends on the environment you �nd yourself in

Self-interest reigns!

• Suppose everyone out for themselves

• Assuming A > B+ > B− > C :

A = 3, B+ = 1, B− = 0, C = −1.

other
α β

me α (0, 0) (3,−1)
β (−1, 3) (1, 1)

• What should I choose?

– If other chooses α: I choose α get 0, choose β get -1
– If other chooses β: I choose α get 3, choose β get 1
– In either case, α better than β

• Choosing α is a dominating strategy.

• So everyone (sensible) chooses α, and su�ers for it.

• But (β, β) better for both!

• Econ. term: Pareto ine�cient

• This payo� matrix has a name: Prisioners dilemma (Flood & Dresher at RAND in
1950)

• Story: Two criminals are taken prisioner. Each can talk or stay silent.

• Both silent: each serves 1 year
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• One talks: talker freed, other serves 3 years

• Both talk: both serve 2 year

• In this scenario, dominant strategy is for both to talk.

Some cooperation

• Psychologists have run this test

• People cooperate much more than in the self-interested case

• How that happens: empathy

• Suppose each player not only cares about their own grade...

• ...but also want their partner to do well.

• This changes the payo� matrix

• Suppose if any player gets A while other gets C , guilt changes reward to -1:

other
α β

me α (0, 0) (−1,−1)
β (−1,−1) (1, 1)

• Now there is no dominating strategy

• If other picks α, best choice α

• If other picks β, best choice β

Sel�essness

• Take it to extreme: add guilt if get A, other gets C ...

• ...add happiness for other if get C , other gets A

other
α β

me α (0, 0) (−1,−1)
β (3,−1) (1, 1)

• Now β is a dominating strategy: it’s better no matter what other chooses

• If everyone thinks this way, leads to best solution!

• In experiments: 30% choose β
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Two person Zero-sum games

Question of the Day In Rock Paper, Scissors, Rock beats Scissors, Paper beats Rock,
and Rock beats Paper. For payo� matrix (entry (a, b) means player I wins a and player
2 wins b):

Player II
r p s

Player I r (0, 0) (−1, 1) (1,−1)
p (1,−1) (0, 0) (−1, 1)
s (−1, 1) (1,−1) (0, 0)

what is the best strategy for players to use.

Today

• Adding uncertainty to the mix

• Zero sum games

• Solution of all 2 by 2 matrix games

Last time: Prisoner’s dilemma

• Arises in practice

– Joint project (shirk or not to shirk)
– Setting prices: if both set prices low both su�er

• Not enought to have outcomes

• Need the payo�s

• Payo�s like (−3, 1).

Simpler problem: analyze zero sum games.
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De�nition 34
In a zero sum game, the outcomes (a, b) satisfy a+ b = 0.

Example Odd-Even game: I pick a number, my partner picks a number. If the sum is
even, I pay partner $1, otherwise the partner pays me $1.

• If I always pick odd, pretty soon I’ll start losing

• Want to pick odd 50% of time, even 50% of time

• No inherent advantage to either player.

• (Rock, paper, scissors) Han Dynasty (206 BC-220AD)

• (Rock,paper,scissors,lizard,spock) (Kass & Bryla)

De�nition 35
The strategic form (aka normal form) of a two-person zero-sum game is a triple
(X,Y,A) where

1. X is the nonempty set of strategies for Player I

2. Y is the nonempty set of strategies for Player II

3. A : (X × Y )→ R is the payo� function

Game proceeds as follows:

• Simultaneously: Player I chooses x ∈ X and Player II chooses y ∈ Y

• Player II pays A(x, y) dollars to Player I

Example: Modi�ed Odd-Even

• X = {1, 2} (1 = odd, 2 = even)

• Y = {1, 2} (1 = odd, 2 = even)

• Suppose payo� matrix is:

Player II
1 2

Player I 1 −2 3
2 3 −4

• Does one side have an advantage in this game?
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• Suppose Player I plays 1 with probability 3/5

• What is expected payo�:

II plays 1 : (3/5)(−2) + (2/5)(3) = 0

II plays 2 : (3/5)(3) + (2/5)(−4) = 1/5

• Remember this is 1/5 that II pays I, so at best II can break even with this strategy.

• Can Player I do better?

• Let p be probability Player I plays 1:

II plays 1 : p(−2) + (1− p)(3) = 3− 5p

II plays 2 : p(3) + (1− p)(−4) = 7p− 4

• First equation wants p large, second equation wants p small

• Maximum occurs when they are equal:

3− 5p = 7p− 4⇒ p = 7/12.

• Player I optimal strategy: call 1 with prob 7/12

What should Player II do?

• If Player I playing optimally, losing 3− 5(7/12) = 7(7/12)− 4 = 1/12 each play

• Can Player II prevent Player I from doing any better?

• Now let p be prob Player II plays 1

I plays 1 : p(−2) + (1− p)(3) = 3− 5p

I plays 2 : p(3) + (1− p)(−4) = 7p− 4

• So again, minimize loss when p = 7/12.

• By Player II playing 1 w/ prob 7/12, ensures that one average loses at most 1/12
each play no matter what I does

• Turns out this always happens: value of optimal winning strategy for Player I equals
the value of the optimal winning strategy for Player II.
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Terminology

• Strategies in X or Y called pure strategies

• Choosing a strategy in X (or Y ) at random is called a mixed strategy

Theorem 7 (The Minimax Theorem)
For every �nite two person zero sum game

1. There is a number V called the value of the game

2. There is a mixed strategy for Player I such that I wins on average V regardless of
what II does.

3. There is a mixed strategy for Player II such that II loses average V regardless of
what I does.

Fairness

• If V = 0, then the game is fair

• If V > 0, then the game favors Player I

• If V < 0, then the game favors Player II

Example Change the Odd-Even payo� matrix again to A(1, 2) = 2:

other
1 2

me 1 −2 2
2 3 −4

What is the value of this game?

Answer

• Can analyze from either Player I or Player II perspective.

• Player I:

II plays 1 : p(−2) + (1− p)(2) = 2− 4p

II plays 2 : p(3) + (1− p)(−4) = 7p− 4

• Setting them equal gives: 2− 4p = 7p− 4⇒ p = 6/11

• This makes the value V = 2− 4(6/11) = −2/11
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Answer 2: Player II perspective

• From Player II’s point of view:

I plays 1 : p(−2) + (1− p)(3) = 3− 5p

I plays 2 : p(2) + (1− p)(−4) = 6p− 4

• So 3− 5p = 6p− 4⇒ p = 7/11

• So the value is V = 6(7/11)− 4 = −2/11

• Same (as guaranteed by Minimax Theorem)

Relation to linear programming

• For those who have had Math 187

• Minimax Theorem is a special case of LP duality

• Can solve games with #(X) = n, #(Y ) = m using linear programming
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Nash Equilibria

Question of the Day Is there an optimal mixed strategy when dealing with 3 or more
players? How about for non zero sum games?

Today

• Nash equilibria

Last time

• For two person, zero sum games, unique value of game

• Use minimax strategy

• For nonzero sum, or three or more players, not always an optimal solution

• Something weaker

De�nition 36
The normal form (aka strategic form) of an n-player game is any list G =
(S1, . . . , Sn;u1, . . . , un) where Si is the set of strategies for player i, and ui : (S1 ×
· · · × Sn)→ R is player i’s payo� function.

Assume each player is trying to maximize their expected utility.
Consider the following game:

Player 2
a b

Player 1 a (1, 2) (0, 0)
b (0, 0) (2, 1)

No pure strategy for Player 1 or 2 is dominant.

Note:
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• For strategy (a, a), neither can switch without lowering payo�

• For strategy (b, b), neither can switch without lowering payo�

• Call (a, a) and (b, b) Nash equilibria

Now look at the following game

Player 2
a b

Player 1 a (1, 2) (4, 0)
b (3, 0) (2, 1)

From any pure strategy, some player wants to switch.
Means no pure strategies are Nash equilibria.

De�nition 37
A probability distribution σi on Si (the strategy set for player i) is called a mixed
strategy.

Notation

• Let σi be the mixed strategy played by player i

• Let σ−i = (σ1, . . . , σi−1, σi+1, . . . , σn) be the mixed strategies played by every
player other than i

• Let ui(σ1, . . . , σn) be the expected payo� for Player i when each player uses mixed
strategy σi

De�nition 38
σ is a Nash equilibrium if for all i

ui(σ) = max
σ′i

ui(σ
′
i, σ−i).

In other words, a set of mixed strategies is a Nash equilibrium if changing one player’s
mixed strategy leads to a lower expected payo� for that person.

Theorem 8 (Nash 1951)
Any �nite game has at least one Nash equilibrium.

[Proof uses Kakutani’s �xed point theorem from analysis.]
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Example Another way to say it is that at the Nash equilibrium, every player is insensitive
to changes in strategy.
Look again at

Player 2
a b

Player 1 a (1, 2) (4, 0)
b (3, 0) (2, 1)

First, no pure strategy by the players is a Nash equilibrium.
Suppose Player I decides to use a mixed strategy where a is played with probability p.

Then the expected payo� for Player II depends on whether or not Player II plays a or b:

E[Payo� for Player II|Player II plays a] = 2p+ 0(1− p)
E[Payo� for Player II|Player II plays b] = 0p+ 1(1− p)

Now suppose Player I chooses p in order to make these expected returns equal!

2p = 1− p⇒ 3p = 1⇒ 1/3.

When Player I plays a with probability 1/3, then no matter what strategy Player II uses
(random or deterministic), Player II has the same expected return.

But two can play at that game (so to speak)!

Suppose Player II plays a with probability p and b with probability 1− p.

E[Payo� for Player I|Player I plays a] = 1p+ 4(1− p)
E[Payo� for Player I|Player I plays b] = 3p+ 2(1− p)

Choosing p to make these expected returns equal:

1p+ 4− 4p = 3p+ 2− 2p⇒ 2 = 4p⇒ p = 1/2.

So a Nash equibilium is:
((1/3, 2/3), (1/2, 1/2))

Example High dimensional example: Calling the police

• n identical players

• Each player can choose to call the police, or not to report a crime

• Bene�t to all if someone calls the police is x

• Cost of calling the police is 1 (assume x > 1)
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• Example: n = 3, players 1 and 2 call the police, 3 does not

payo� = (x− 1, x− 1, x).

• Because of symmetry, look for a Nash equilibrium where each player has mixed
strategy of calling the police with probability p.

• p chance call police, get x− 1

• (1− p) chance no police, (1− p)n−1 chance no one else calls police either.

• When does indi�erence to choices occur?

x− 1 = x(1− (1− p)n−1).

• Player i indi�erent when p = 1− (1/x)1/(n−1)

• So what is the chance the police are called?

1− (1− p)n = 1− (1/x)n/(n−1).

– Decreasing in n [More people means less likely to call!]
– Approaches 1− 1/x as n→∞
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Randomized algorithms

Question of the Day Suppose that at least one element of an array of n elements
has value a. What is the fastest way to �nd such an element?

Today

• Randomized algorithms

De�nition 39
A randomized algorithm uses randomness as part of its running procedure.

Many types, all named after famous gambling locations: Monte Carlo, Las Vegas, Atlantic
City.

De�nition 40
A Monte Carlo randomized algorithm returns a random result.

De�nition 41
A Las Vegas randomized algorithm always returns the correct result.

De�nition 42
An Atlantic City algorithm has a 2/3 chance of returning the correct result.

Later on, computer science got more stodgy in their names:

107 184



Mark Huber Notes on Stochastic Operations Research

De�nition 43
An algorithm is in Randomized polynomial time (RP) if

1. It takes a polynomial number of steps in input size
[More precisely, if a probabilistic Turing machine always runs in time polynomial
in the input size.]

2. If correct answer is False, then returns False.

3. If correct answer is True, then returns True with probability at least 1/2.

• Note the 1/2 is unimportant. If you want 1/8, just run algorithm 3 times, only report
T if TTT.

• Always guaranteed to get F answers right.

De�nition 44
An algorithm is in bounded-error probabilisitic polynomial time (BPP) if it

1. It takes a polynomial number of steps in input size to answer T or F.
[More precisely, if a probabilistic Turing machine always runs in time polynomial
in the input size.]

2. The chance the answer is correct is at least 2/3.

• Can always get answer correct 1/2 of time: just �ip a coin.

• As with RP, run BPP multiple times to get 2/3 arbitrarily close to 1.

De�nition 45
Say that a problem is in RP (or BPP) if there exists an RP (respectively BPP) algorithm
for the problem.

• Hopefully clear from context whether talking about the set of problems...

• ...or the set of algorithms.

De�nition 46
A problem is in Nondeterministic Polynomial time (NP) if there exists a proof of
the answer that can be checked in polynomial time.

• Millenium problem: Does P = NP? (Can every problem whose answer can be checked
in polynomial time be solved in polynomial time?)

108 184



Mark Huber Notes on Stochastic Operations Research

• Would be happy with RP = NP or BPP = NP.

• Also unknown: can all randomized algorithms be derandomized? Does BPP = P?

Qotd

• How many steps does deterministic algorithm take?

• Basic Alg: look at array elements in order 1 through n, quit when �nd value a

• Could take 1 step, could take n steps

• Usually worried about worst case behavior, so n steps.

Randomized search

• Suppose I use the following algorithm

– Choose a random number uniformly from 1 to n
– If value is a, quit, otherwise goto �rst step.

• Always returns correct answer, so Las Vegas algorithm.

• Number of steps T , T ∼ Geo(1/n), so E[T ] = n.

• Unbounded possible number of steps.

• Not any better than original!

Better rand. alg.

• Improvement:

– Choose a random number i uniformly from 1 to n
– Look at elements i, i + 1, . . . , n, 1, 2, . . . , i − 1 in order, quit when you �nd

value a.

• Let T be number of steps.

• Let x be location of value i. Then P(T = j) is probability i+ j = x mod n = 1/n.

• So T ∼ Unif({1, . . . , n}, E[T ] = (n+ 1)/2.

• Nearly twice as fast as worst case scenario!

• Can’t be worse than n steps.

• So simple randomness cuts average running time in half.
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Basic randomness principle

• Using randomness “prevents” worst case scenario.

• Identical to using deterministic algorithm on randomly sorted data.

Suppose there are two elements of array with value a

• Original algorithm

– Could be at positions n− 1 and n.
– Worst case running time n− 1.

• First rand. alg.

– Now 2/n chance of picking a value a element.
– So T ∼ Geo(2/n), E[T ] = n/2.

• Second rand. alg.

– Could be at positions n− 1 and n.
– So T ∼ Unif({n− 1, n− 2, n− 3, . . . , 1, 1})
– So

E[T ] =
1

n
(1) +

(
1− 1

n

)
1 + (n− 1)

2
= n/2 + 1/n− 1/2.

– Not much improvement.

• Can we do better?

Random order

• Doing even better:

– Randomly permute the elements
– Use deterministic algorithm from there.

• Let T be position of �rst a.

• Then P(T ≥ i) = n−i
n

n−i−1
n−1 .

• Tail sum formula:

E[T ] =
n∑
i=1

P(T ≥ i) =
n− 2

3
.

• [Uses
∑n

i=1 i = n(n+ 1)/2 and
∑n

i=1 i
2 = (1/6)n(n+ 1)(2n+ 1).]
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Randomized veri�cation

Question of the Day Given n by n matrices A, B, and C , does A ·B = C?

Today

• Order notation

• Freivalds’ Algorithm

Running time

• How long does it take to compute an answer?

• Consider �nding 1 0 1
0 1 0
0 0 1

 ·
0 1 1

1 1 0
1 0 0


• To calculate the upper left element of answer, need to �nd:

1 · 0 + 0 · 1 + 1 · 1,

so three multiplications and two additions.

• There are 9 entries to the product, so need 27 mult. and 18 additions

• For any n by n matrix, need

n3 multiplications and n2(n− 1) additions

• Total time: 2n3 − n2 steps.
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Order notation

• Idea: the −n2 is unimportant, small compared to 2n3.

• The 2 unimportant since we don’t know how long a single arithmetic step takes

• The n3 part tells us how many steps are taken

• For f(n) the number of steps needed for compute n by n matrices using the basic
approach

f(n) = Θ(n3).

[Abuse of notation alert: technically should write f(n) ∈ Θ(n3)]

• Informally O(g(n)) means f(n) ≤ cg(n) for some c...

• ...Ω(g(n)) means f(n) ≥ cg(n) for some c...

• ...Θ(g(n)) means c1 ≤ fn ≤ c2 for some c1, c2

De�nition 47
Say that f(n) is Big-O of g(n) if

f(n) = O(g(n))⇔ (∃c > 0)(∃N)(∀n ≥ N)(f(n) ≤ cg(n)).

De�nition 48
Say that f(n) is Big-Omega of g(n) if

f(n) = Ω(g(n))⇔ (∃c > 0)(∃N)(∀n ≥ N)(f(n) ≥ cg(n)).

De�nition 49
Say that f(n) is Big-Theta of g(n) if

f(n) = Θ(g(n))⇔
(∃c1 > 0)(∃c2 > 0)(∃N)(∀n ≥ N)(c1g(n) ≤ f(n) ≤ c2g(n)).

Example:

• Fact: 2n3 − n2 is Θ(n3)

• Proof: Let N = 1, c1 = 1, c2 = 2. Let n ≥ 1. Then

n3 ≤ 2n3 − n2 ≤ 2n3,

which completes the proof.
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Multivariable order notation

• Need to be a little more careful in de�ning order notation for multiple variables.

• Example: Want 3mn2 = O(mn2).

De�nition 50
Say that f(n1, n2, . . . , nd) is Big-O/Ω/Theta of g(n1, n2, . . . , nd) for all i ∈
{1, . . . , d} ∃N−i such that for all n−i term by term at least N−i, f(n1, . . . , nd) is Big-
O/Omega/Theta of g(n1, . . . , nd) as a function of ni.

Matrix multiplication

• Basic method: Θ(n3)

• Strassen algorithm (1969): Θ(n2.807)

• [small improvements]

• Coppersmith-Winograd (1990)Θ(n2.376)

• Stothers (2010) Θ(n2.3736).

• Williams algorithm (2011) Θ(n2.3727)

Verifying

• So is there a faster way to verify that A ·B = C?

• Freivald’s algorithm (1977) O(n2)

• More precisely: after Θ(kn2) steps, the probability of returning the wrong answer is
at most (1/2)k.

• Idea: Basic multiplication A~x of n by n matrix times n by 1 vector takes Θ(n2) steps.

• [Can’t improve since matrix has n2 entries and must look at each entry.]

• Pick random vector ~X .

• Find A(B ~X) using two matrix vector multiplications.

• Find C ~X using one matrix vector multiplication.

• If AB = C , then AB ~X always equals C ~X .

• But if AB ~X 6= C ~X , have proof that AB 6= C
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Freivald’s method. Input: A, B, C , three n by n matrices

1) Generate ~X ∼ Unif({0, 1}n)

2) Calculate Y ← B ~X . Calculate W ← A~Y . Calculate Z ← C ~X
3) If W = Z return true, otherwise return false.

Example: Does (
−2 1
3 1

)(
1 1
0 −3

)
=

(
−2 −4
3 1

)
Pick random vector from {0, 1}2, perhaps ~X = (1, 0)T :(

−2 1
3 1

)((
1 1
0 −3

)(
1
0

))
=

(
−2 1
3 1

)(
1
0

)
=

(
−2
3

)
whereas: (

−2 −4
3 1

)(
1
0

)
=

(
−2
3

)
.

So that would return TRUE. But what if ~X = (1, 1):(
−2 1
3 1

)((
1 1
0 −3

)(
1
1

))
=

(
−2 1
3 1

)(
2
−3

)
=

(
−7
3

)
while (

−2 −4
3 1

)(
1
1

)
=

(
−6
4

)
.

so result is FALSE.
When returns FALSE, always correct, when returns TRUE, only sometimes correct.

Fact 24
The chance that Freivald’s Algorithm is incorrect when it returns TRUE is at most 1/2.

Proof. The only way Freivald can be wrong is if A · B 6= C . Hence for some (i, j),
[AB](i, j) 6= C(i, j). Now

[AB ~X](i, j) =

n∑
k=1

(AB)ikXk,

and

[C ~X](i, j) =
n∑
k=1

C(i, i)X(k).
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When [ABX](i, j) 6= [CX](i, j), that’s the same as [(AB − C)(X)](i, j) 6= 0. [(AB −
C)(X)](i, j) can be written as

n∑
k=1

(AB)ikXk −
n∑
k=1

C(i, k)X(k) = ([AB](i, j)− C(i, j))X(j) + Y,

where X(j) and Y are random variables.
Now either Y = 0 or Y 6= 0, so

P(([AB](i, j)− C(i, j))X(j) + Y = 0]

= P(([AB](i, j)− C(i, j))X(j) = 0, Y = 0]

+ P(([AB](i, j)− C(i, j))X(j) + Y = 0, Y 6= 0]

= P(([AB](i, j)− C(i, j))X(j) = 0|Y = 0]P(Y = 0)

+ P(([AB](i, j)− C(i, j))X(j) + Y = 0|Y 6= 0]P(Y 6= 0)

Since [AB](i, j) − C(i, j) 6= 0, the only way for ([AB](i, j) − C(i, j))X(j) = 0 is if
X(j) = 0. This has probability 1/2.

Similarly, if Y 6= 0, then at most one choice of X(j) can make

([AB](i, j)− C(i, j))X(j) = 0,

and that choice happens with probability at most 1/2.
Hence

P(([AB](i, j)− C(i, j))X(j) + Y = 0]

≤ (1/2)P(Y = 0) + (1/2)P(Y 6= 0)

= 1/2.

Improving further

• Suppose X ∼ {0, 1, . . . , k − 1}

• Chance of giving wrong answer at most 1/k

• Suppose X ∼ Unif([0, 1])

• Then chance of giving wrong answer is 0

• Does �t Turing machine model
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Randomized QuickSelect

Question of the Day What is the fastest way to �nd a median of a group of numbers?

Today

• Find medians quickly

De�nition 51
Amedian of a �nite well-ordered setA is any a ∈ A such that #{b : a ≤ b} ≥ (1/2)#A
and #{b : a ≥ b} ≥ (1/2)#A

Comments

• Median, mode, and mean often called measures of central tendancy

• Mode easiest to �nd, but most worthless estimator

• Median most robust estimator (insensitive to outliers)

• For well behaved functions, higher variance in median than in the mean

• When #(A) odd, median value is unqiue

• When #(A) even, can be two median values

• Often average the results

The problem

• Finding median(s) of A ⊆ R, #A = n

• Brute force: sort elements, then pick middle one (or two)

• Sorting n elements takes O(n ln(n)) time
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• Can we do better?

• Use randomness!

Split your set randomly

• Pick an element a ∼ Unif(A)

• Compare each remaining element of A to a

• If at most a, put to left of a, otherwise, put on right

• Example: A = {1, 9, 3, 7, 2, 4, 2}

• Choose a = 2 randomly

• Sort to get Aleft = {1, 2, 2} ≤ 2 ≤ {9, 3, 7, 4} = Aright

• Now instead of wanting median of A, want smallest element of Aright

To �nd the kth smallest element of A:

QuickSelect Input: A, k

1) Repeat
2) a← Unif(A), r ← 0, `← 0, AL ← {}, AR ← {}
3) For each b ∈ A \ {a}
4) If a ≥ b
5) AL ← AL ∪ {b}, `← `+ 1
6) else
7) AR ← AR ∪ {b}, r ← r + 1
8) If #(AL) = k − 1
9) A← {a}

10) If #(AL) > k − 1
11) A← AL
12) If #(AL) < k − 1
13) A← AR, k ← k −#(AL)− 1
14) Until #(A) = 1
15) Return the only element of A.

Fact 25
The total number of comparisions used by QuickSelect is at most n(n − 1)/2. The
expected number of comparisons used by QuickSelect is at most 2n.

117 184



Mark Huber Notes on Stochastic Operations Research

Proof. Suppose k = 1, so we are trying to �nd the maximum value. The �rst time we run
the repeat loop requires n− 1 comparisions. If we are unlucky and had chosen the largest
value of A, then AL has size n− 1 and k stays the same. The next step would then require
n − 2 comparisions, and so on down to the last step that requires only 1 comparision.
Hence the total number of comparisions is:

(n− 1) + (n− 2) + · · ·+ 2 + 1 =
n(n− 1)

2
.

Now bound the average number of comparisions. The rough idea is that the size of the
set A is being chopped in half at each step, so after t iterations of the repeat loop, the
average value of n is n(3/4)t. The total number of comparisons at step t is one fewer than
the size of A, making the total expected number of comparisons at most

n+ n
3

4
+ n

9

16
+ · · · = n(1/[1− 3/4]) = 4n.

Now let’s make that precise! Let T denote the amount of comparisons used in a run of
the program. Our goal is to �nd E[T |n].

Recall the notion of order statistics, which are just the sorted values of A:

A = a(1) ≤ a(2) ≤ a(3) ≤ · · · ≤ a(n).

Ties end up helping us, but they make the analysis trickier, so assume for now that there
are no ties among the elements of A. Then since the element a ∼ Unif(A), if a = a(i),
then i ∼ Unif({1, 2, . . . , n}.

No matter what happens, after we choose a, there are n− 1 comparisons. What happens
next depends on the value of i.

Case 1: i = k. Then we have found the element, and no more comparisons are necessary.
Case 2: i > k. Then A← AL. The size of AL is just i− 1.
Case 3: i < k. Then A← AR. The size of AR is n− i.
Putting this together gives:

i where a = a(i) Size of next A Comparisons needed

1 n− 1 E[T |n− 1]
2 n− 2 E[T |n− 2]
...

...
...

k − 1 n− k + 1 E[T |n− k + 1]
k 1 0

k + 1 k E[T |k]
k + 2 k + 1 E[T |k + 1]

...
...

...
n n− 1 E[T |n− 1].
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Each of these possibilities occurs with probability 1/n. This gives the following recurrence
relation:

E[T |n] =
1

n

[
k−1∑
i=1

E[T |n− i] +
n−k∑
i=1

E[T |n− i]

]

Let’s prove that E[T |n] ≤ 4n using strong induction. When n = 1, the number of
comparisons used is 0, so that works.

For our strong induction hypothesis, suppose E[T |n′] ≤ 4n′ for all n′ ≤ n. Consider
E[T |n+ 1]. From the recurrence above and using the induction hypothesis:

E[T |n+ 1] = n− 1 +
1

n+ 1

[
k−1∑
i=1

E[T |n+ 1− i] +

n−k∑
i=1

E[T |n+ 1− i]

]

≤ n+
1

n+ 1

[
k−1∑
i=1

4(n+ 1− i) +
n−k∑
i=1

4(n− i)

]

≤ n+
4

n+ 1

[
(n+ 1)(n)

2
− (n− k + 2)(n− k + 1)

2

+
(n)(n− 1)

2
− (k)(k − 1)

2

]
≤ n+

4

n+ 1

[
(n+ 1)(n)

2
− (n− k + 2)(n− k + 1)

2

+
(n+ 1)(n)

2
− (k + 1)(k)

2

]
≤ n+

4

n+ 1

[
(n+ 1)(n)− (n− k)(n− k)

2
− k2

2

]
It is an easy maximization problem to show that the right hand side is largest for

k ∈ [1, n] when k = n/2. Hence

E[T |n+ 1] ≤ n+
4

n+ 1

[
(n+ 1)(n)− (n/2)2

2
− (n/2)2

2

]
≤ n+

4

n+ 1
[(n+ 1)(n)− (n+ 1)(n)(1/4)]

≤ n+ 4(3/4)n

= 4n

which completes the strong induction.

Trickier question

• What is the variance?

• Easy to resolve through Monte Carlo simulation
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Bounding tails easier

• Suppose take 8n comparisons

• By Markov’s inequality, only 1/2 chance algorithm requires that many

• n always decreases in algorithm

• So for T number of comparisons...

P(T ≥ 8n) ≤ 1/2, P(T ≥ 16n) ≤ (1/2)2, P(T ≥ 24n) ≤ (1/2)3.

Fact 26
If T is the number of samples used by QuickSelect, and α > 0,

P(T ≥ α) ≤ 2e−α/11.55.

Proof. From the above Markov inequality argument,

P(T ≥ αn) ≤ (1/2)bαn/(8n)c

≤ (1/2)α/8−1

= 2eln(1/2)α/8

≤ 2e−α/11.55.

Improvements

• Can slightly improve analysis to get better than 4n by also analyzing how k changes

• Can’t do much better than that.

• Floyd-Rivest Select Algorithm, average comparisons

n+ min{k, n− k}+ o(n).

De�nition 52
Say that f(n) is little-o of g(n) if

(∀ε > 0)(∃N)(∀n ≥ N)(f(n)/g(n) < ε).

Fact 27
It is true that f(n) = o(g(n)) if limn→∞ f(n)/g(n) = 0.
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Idea of FR-Select

1. Let B be n3/4 random items from A

2. Sort the elements of B

3. Find two order statistics u and v of B: (k/n)n3/4 −
√
n and (k/n)n3/4 +

√
n

4. If k > 1/2, compare A against u then v if necessary

5. If k ≤ 1/2, compare A against v then u if necessary

6. Now have AL < u < AM < v < AL where Am roughly 2
√
n.

7. Sort everything in Am, then know exactly where a(k) ∈ Am.
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Randomization for IP’s and LP’s

Question of the Day Consider the set U = {1, 2, 3, 4, 5, 6, 7} and subsets of U :

S1 = {1, 6}, S2 = {3, 4}, S3 = {5}, S4 = {1, 2, 3}

S5 = {2, 4, 6, 7}, S6 = {4, 5, 6}, S7 = {7}.

Find the smallest collection of S1 whose union is U .

Today

• Set cover problem

• Integer programming

• Linear programming

• Randomized rounding

De�nition 53
Given U with n elements, and a collection S1, S2, . . . , Sm of subsets of U , �nd the
smallest subset of {S1, . . . , Sm} whose union is U . This is the Set Cover Problem

Brute force

• Each Si is either in or out of the collection.

• So at most 26 − 1 (-1 since empty set doesn’t work) to try

• In general 2m − 1.

• Total running time O(n2m).
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Greedy

• Grab the Si next that covers more values than any other

S5 then S1 then S2 then S3.

• Not always optimal! S4 ∪ S5 ∪ S7 = U .

Problem is in NP

• Decision Set Cover problem is in NP

• DSC: Given k ≤ m, are there k di�erent Si whose union is U?

De�nition 54
A problem is in NP if the answer can be checked in time polynomial in the input size of
the problem.

• For Decision Set Cover, easy to check if an answer is correct

• Given Set Cover solution, get Decision Set Cover answer

• Given m runs of Decision Set Cover, get Set Cover solution

Integer Program

• A program is just a list (music, computer commands, constraints)

• Integer refers to fact that variables must be integers.

• For set cover, let xi = 1(Si is part of collection)

• Example: x = (1, 1, 1, 0, 1, 0, 1) says collection is S1, S2, S3, S5, S7.

• How can we be sure that element 3 is covered?

• Element 3 appears in S2 and S4

• So Element 3 is covered i� x2 + x4 ≥ 1

• Want to use as few Si as possible.

• So the integer program (IP) is:
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max x1 + x2 + · · ·+ x7

subject to x1 + x4 ≥ 1

x4 + x5 ≥ 1

x2 + x4 ≥ 1

x2 + x5 + x6 ≥ 1

x3 + x6 ≥ 1

x1 + x5 + x6 ≥ 1

x5 + x7 ≥ 1

xi ∈ {0, 1} ∀i.

Randomized rounding

• With xi ∈ {0, 1} ∀i, it is an IP

• Without that constraint, it is a Linear Program (LP)

• LP can be solved in polynomial time! (Karmarkar 1979)

• Idea: solve the LP to get x∗

• For each i, draw Ui

• If Ui ≤ x∗i , make yi = 1

• Note E[y1 + y2 + · · ·+ yn] = x∗1 + x∗2 + · · ·+ x∗n

Consider one constraint

• x1 + x5 + x6 ≥ 1

• So what is P(y1 + y5 + y6 ≥ 1)? At least:

min 1− (1− y1)(1− y5)(1− y6)

subject to y1 + y5 + y6 = 1

y1, y5, y6 ≥ 0

• Continuous function over closed, bounded regions, global max exists

• Note, if yi 6= yj , replacing both with (yi + yj)/2 increases the objective function.

• So global max has y1 = y5 = y6 = 1/3

• Which makes P(y1 + y5 + y6 ≥ 1) ≥ 1− (1− 1/3)3 = 1− 8/27.
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• In general, with at most k variables in constraint, chance of not being covered is at
most:

(1− 1/k)k ≤ e−1.

• If one if covered, remaining are more likely to be covered, so chance all are covered
is at least (1− e−1)n.

• Too small!

Improving the probability

• Draw U1, U2, . . . , Ut ∼ Unif([0, 1]) iid

• Make yi = 1(min{U1, . . . , Ut} ≤ x∗i )

• Now chance of element i not being covered is at most

1/et

• Recall P(∪Ai) ≤
∑

P(∪Ai). So chance ∃i that is not covered is at most

n/et.

• Let Y =
∑n

i=1 yi. Then

E[Y ] =

n∑
i=1

1− (1− xi)t ≤ t
n∑
i=1

xi.

[Slope of 1− (1− xi)t at most t.]

• By Markov, P(Y ≥ 2E[Y ]) ≤ 1/2.

• If t = ln(4n), then probability all are not covered is at most 1/4.

• So
P(Y ≥ 2E[Y ] or some elements not covered) ≤ 1/2 + 1/4 = 3/4.

• So expect to need 4 tries to get both covered and within factor of ln(4n) of
∑
x∗i

Other places Randomized Rounding used

• Facility location problem
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Simplex method

• Randomness also helpful in solving LP’s quickly

• The simplex method is a way to solve LP’s

• The method is fast in practice, but slow in theory

• At some steps, you have choice of where to move next

• By choosing randomly, can make Simplex expected polynomial time
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Forecasting

Question of the Day [Winston 1991, p. 1164] Suppose the following data for T.V.
Sales are taken:

Month Sales

1 30
2 32
3 30
4 39
5 33
6 34

Today

• Forecasting

Predicting the future

• 2 main methods

– Extrapolation
∗ moving averages
∗ smoothing

– Causal Methods
∗ build statistical model of data
∗ linear regression

Moving averages

• Simplest moving average is just the average of last n observations
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Qotd

Month Sales Prediction Error

1 30 - -
2 32 - -
3 30 - -
4 39 30+32+30

3 = 30.66 8.333
5 33 32+30+39

3 = 33.66 -0.6666
6 34 30+39+33

3 = 34.33 -0.3333

This type of analysis perfect for spreadsheets!

How should we decide n?

• Most of time, use SD(X) to measure “spread” in X

– Easy to compute
– X1, X2 indep., SD(X1 +X2) =

√
SD(X1)2 + SD(X2)2

• Other problem: even if E[X] exists, SD(X) might not

• Alternative: mean absolute deviation

De�nition 55
The mean absolute deviation of X is

MAD(X) = E[|X − E(X)|].

Ex: X ∼ Exp(λ), fX(s) = λe−λs1(s ≥ 0)

E(X) =

∫ ∞
−∞

sfX(s) ds = 1/λ.
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E(|X − E(X)|) =

∫ ∞
−∞
|s− 1/λ|fX(s) ds

=

∫ ∞
−∞
|s− 1/λ|λe−λs1(s ≥ 0) ds

=

∫ ∞
0
|s− 1/λ|λe−λs ds

=

∫ 1/λ

0
−(s− 1/λ)λe−λs ds

+

∫ ∞
1/λ

(s− 1/λ)λe−λs ds

=
2

e
· 1

λ

Fact 28
When E(X) exists, so does MAD(X).

Remarks

1. MAD(X),SD(X),E(X) all have the same units.

2. Alternate notation: MD(X) = MAD(X)

3. MAD(cX) = cMAD(X)

4. MAD(X1 + · · ·Xn) di�cult to calculate, even for Xi indep: can use Monte Carlo
to �nd

Some MAD values:

Dist E(X) SD(X) MAD(X)

Exp(λ) 1/λ 1/λ (2/e)(1/λ)

Unif([a, b]) a+b
2

b−a√
12

b−a
4

N(µ, σ) µ σ
√

2/πσ

Estimating MAD

• Each error in forecast assumed to have mean 0.

• Error is data minus prediction

Ei = Xi − Fi.

• If E(Ei) = 0, MAD(Ei) = E(|Ei|)
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• To estimate MAD, take sample averages of absolute error

ˆMAD =
1

N

N∑
i=1

|Ei|

Q of Day When N = 3:

ˆMAD =
|8 2/3|+ | − 2/3|+ | − 1/3|

3
=

29

9
= 3.222

• Rule of thumb for choosing N

– Pick values of N that minimizes ˆMAD

• [Show how to estimate ˆMAD w/ spreadsheet]

• Gives N = 4 for this data.

When to use

• Moving averages work best when

xi = b+ εi

• b is the best level. εi is random �uctuation

• Work worst when

– Seasonality
– Trend
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Simple Exponential Smoothing

Question of the Day How can we smooth out small �uctuations in time series data?

Today

• Exponential Smoothing

The model

• Suppose model is Xi = b+ εi

– One high value can throw o� base for a long time

• Idea: Let last observation a�ect prediction less

Simple Exponential Smoothing

At = αXt + (1− α)At−1

Forecast at t for Xt+1

Smoothing
constant 0 < α < 1

Observation
at time t

Forecast at t− 1 for Xt

• This makes At a convex linear combination of Xt and At−1

• Call the error in prediction:

et = Xt −At−1
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• For exponential smoothing:

At = At−1 + α(Xt −At−1) = At−1 + αet.

• So new prediction is old prediction plus fraction of error from last prediction

Example:

Month Sales Forecast et

0 32
1 30 32 -2
2 32 31.8 0.20
3 30 31.82 -1.82
4 39 31.64 7.36
5 33 32.37 0.63
6 34 32.44 1.56

Here ˆMAD = 3.04.

How to choose α

• Before, choose N to minimize ˆMAD

• Do the same thing here

• Spreadsheet very helpful here

• For α integer multiple of 0.05, best α = 0.25

α ˆMAD

0.05 3.20
...

...
0.20 2.89
0.25 2.88
0.30 2.90
...

...

Remarks

• Called “smoothing” because variation et reduced to αet (α < 1)

• α = 2/(N + 1) approximately same as moving average w/ N observations
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• Called “Exponential smoothing because:

At = αXt + (1− α)At−1

= αXt + (1− α)[αXt−1 + (1− α)At−2]

= αXt + (1− α)αXt−1 + (1− α)2[αXt−2 + (1− α)At−3]

=

[
k∑
i=0

α(1− α)iXt−i

]
+ (1− α)k+1At−k−1.

• So past data e�ect on present prediction declines exponentially

What is a good α?

• Could use ˆMAD to choose

• In practice α = 0.1, 0.3, 0.5 commonly used

• α > 0.5 indications some other trend/seasonality present

When to use

• Moving average works when you have a baseline:

Xt = b+ εt.

• Exponential smoothign works when baseline wanders:

Xt = mt + εt

mt = mt−1 + δt

[Here E[δt] = 0, mt is a random walk.]

Holt’s method: Exponential smoothing with Trend

• Works well when baseline has a linear trend:

Xt = mt + εt

mt = mt−1 + γ + δt

• Idea: Use Lt to predict mt and Tt to predict γ

Holt’s Method:

Lt = αXt + (1− α)(Lt−1 + Tt−1)

Tt = β(Lt − Lt−1) + (1− β)Tt−1
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Next months forecast: ft,1 = Lt + Tt

k months in future forecast: ft,k = Lt + kTt

What’s going on?

• Here Tt is a convex linear combination of Lt − Lt−1 and Tt−1

• Lt is a a convex linear combination of Xt and Lt−1 + Tt−1

Example: Blu-ray sales (1000’s) with α = 0.3 and β = 0.1

Month Sales Lt Tt Prediction et

25.3 7.4
1 32 32.49 7.379 32.7 -0.7000
2 40 39.9083 7.38293 39.869 0.1310
3 38 44.503861 7.1041931 47.29123 -9.291
4 56 52.92563787 7.235951477 51.6080541 4.391
5 67 62.21311254 7.441103797 60.16158935 6.838

Economics data

• Often Econ data is growing exponentially:

Xt = abtεt.

• Just take logarithm, and smooth as before:

ln(Xt) = ln(a) + t ln(b) + ln(εt).
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Seasonality

Question of the Day How can we incorported seasonality into forecasting?

Today

• Winter’s method for seasonal forecasting

Idea:

Lt = baseline
Tt = trend
St = multiplier for season
c = # of time periods in season

Example: Deck furniture

• Suppose number sold in June is 1.8 times average, s6 = 1.8

• Number sold in January is 0.3 times average, S1 = 0.3

• Use α for Lt, β for Tt, γ for St

• For months, c = 12

• For current month t, St−12 was seasonal multiplier last year

Winter’s Model

Lt = α
Xt

St−c
+ (1− α)(Lt−1 + Tt−1)

Tt = β(Lt − Lt−1) + (1− β)Tt−1

St = γ
Xt

Lt
+ (1− γ)St−c.
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Next month forecast: ft,1 = (Lt + Tt)St+1−c

k month forecast: ft,k = (Lt + kTt)St+k−c

Again: convex combinations of current data and past predictors.

Initializing

• Need some initial estimates of trends, seasonal factors

• Multiple ways to do this

• Example: suppose have last two years of sales:

Year -2 4 3 10 14 5 26 38 40 28 17 16 13
Year -1 9 6 18 27 48 50 75 77 52 33 31 24

µ̂Year-2 =
450

12

µ̂Year-1 =
234

12

T0 =
µ̂Year-1 − µ̂Year-2

12 months = 1.500/month

L0 = µ̂Year - 1 + 6 month(1.5/month)

= 37.5 + 6(1.5) = 46.5

• Now let’s get sasonal estimates: Average for Year -2 are 19.5

Year -2 in Jan. =
actual sold

average for year =
4

19.5
= 0.205

Year -1 in Jan. =
9

37.5
= 0.240.

• Note: s1−24 should be relatively close to s1−12 or model might be bad.

s−11 =
0.205 + 0.240

2
= 0.2225.

Spreadsheet time!

• Now that we have model, place in spreadsheet

• Can calculate accuracy of forecast
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More about MAD

• Measure of how good is forecast

• Normality an often used model

• For one reason: easy to calculate with

For normal r.v., MAD =

√
2

π
σ

So σ̂ =

√
π

2
ˆMAD

• Can use this to construct con�dence intervals for forecast

• For normal data, a 95% con�dence interval looks like:

[prediction− 1.960
√
π/2 ˆMAD, prediction + 1.960

√
π/2 ˆMAD]

µ 1.960µ−1.960µ

95%

• This CI includes several assumtions

– E[forecast] = true value]

– forecast ∼ N(true value, (
√
π/2 MAD)2)

Remarks

• You have a three dimensional optimization problem to �nd α,β,γ that minimizes
MAD

• Usually α, β are at most 0.5 (as in Holt)

• However, γ can be larger: seasonal data is rare, so earlier data more important
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More sophisticated

• Linear regression

• k di�erent predictor variables

• k predictors each measured n times to get X an m by k matrix

• Results measured n times to get Y a k dimensional vector

• k coe�cients β

• Model:
Y = Xβ + ε,

• Can use least squares or other methods to estimate β

• More detail in Math 152
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Marginal Analysis

Question of the Day [Winston 1991] A gift shop buys plastic St. Louis arches for $2
and sells them for $4.50. Unused arches can be sold to smaller shops for $0.75. Suppose
the model is:

i P(sales = i)

100 30%
150 20%
200 30%
250 15%
300 5%

How many should they buy?

Today

• Optimization through marginal analysis

Notation

• Let d = demand and q = amount ordered

• Let c(d, q) = cost incurred by vendor

• Let D = the random demand (sales)

Goal (Utility = -cost)

min
q

E(c(D, q)) =
∑

d:P(D=d)>0

P(D = d)c(D, q).

Usually f(q) = E(c(D, q)) is a convex up function of q.
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De�nition 56
A function f is convex [up] if the line segment connecting any two points on the graph
of the function lies at or above the function. That is,

(∀a < b)(∀λ ∈ [0, 1])(λf(a) + (1− λ)f(b) ≥ f(λa+ (1− λ)b))

Fact 29 (Jensen’s inequality)
for all random variables X and convex up functions f : E[f(X)] ≥ f(E(X)).

Classic example: E[X2] ≥ E(X)2.

De�nition 57
When q < d the lost income the lost income is called understocking cost. When q > d
the expense of buying too many is called overstocking cost.

Qotd

• Each calendar not sold (understocked) incurs cost of $4.50− $2.50 = $2.00

• Each calendar overstocked incurs cost of $2− $0.75 = $1.25

q

cost

d d′

2.5(d− q)

1.25(q − d)

• Each value of d gives a di�erent convex function
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Fact 30
If c(d, q) is convex for all d, then for any random variable D,

f(q) = E[c(D, q)]

is also convex.

Optimization

• Convex functions in 1D easy to optimize

arg min
q∈Z

f(q).

• Convexity gives local min = global min

– Repeat
– If f(q + 1) < f(q) increase q by 1
– Until f(q + 1) > f(q)

Qotd

• D ∈ Z, q ∈ Z

f(q + 1)− f(q) = E(c(D, q + 1))− E(c(D, q))

= E(c(D, q + 1)− c(D, q))

• Note:

c(D, q + 1)− c(D, q) =

{
1.25 if q ≥ D
−2.5 if q < D

= −2.5 + 3.25 · 1(D ≤ q)

E(c(D, q + 1)− c(D, q)) = −2.5 + 3.25 · P(D ≤ q).
So

f(q + 1) < f(q)⇔ −2.5 + 3.75 · P(D ≤ q) < 0

⇔ P(D ≤ q) < 2.5/3.75 = 2/3.

For this problem

P(D ≤ 100) = 0.30, P(D ≤ 150) = 0.50, P(D ≤ 200) = 0.80.

Optimal strategy is to order

q∗ = 200 calendars
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General solution

Let cu = cost of 1 unit of understock
co = cost of 1 unit of overstock

q∗ = inf

{
q : P(D ≤ q) ≥ cu

cu + co

}
.

News vendor problem

• Children used to buy papers from the publisher

• Would sell what they could

• (After a strike) they could resell unused copies back to printer

Note

• If E(c(D, q)), simple optimization doesn’t work

• Gets trapped at �rst local minima
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News vendor problem with continuous
demand

Question of the Day [Winston 1991 based on Virts & Garrett (1970)] A TV manu-
facture estimates annual demand as normal with mean 6000, st. dev 2000. Sets cost
$100 to build and sell for $250. How many should they build?

Today

• Continuous Marginal Analysis

Why use R instead of Z?

• Last time treated case where q ∈ Z

• Normal model not accurate

– Can’t build 1/2 a RV
– Also 0.1% chance that demand < 0!

• Continuous often easier to calculate with than discrete

• [LP’s much easier than IP’s]

• Can lead to analytical solutions in terms of variables

Convexity

• Both D and q are in R

• Good news: still have if c(d, q) convex in q for all d, then E[c(D, q)] is still convex
in q for all r.v. D

• Continuous convex functions have unique minimum value over [a, b]
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• Let f(q) = E(c(D, q))

• Let h > 0 then
f(q + h)− f(q) = E(c(D, q + h))− c(D, q)

= E([c(D, q + h)− c(D, q)]1(D ≤ q)
+ [c(D, q + h)− c(D, q)]1(D ∈ (q, q + h))

+ [c(D, q + h)− c(D, q)]1(D ≥ q + h)).

= E(coh1(D ≤ q) + εh1(D ∈ (q, q + h))

− cuh1(D ≥ q + h)),

where co is overstock cost, cu is understock cost, |ε| ≤ max{co, cu}. Factoring out
an h gives:

f(q + h)− f(q) = h[coP(D ≤ q) + εP(D ∈ (q, q + h))− cuP(D ≥ q + h)]

• As h→ 0, the middle term goes to 0, and the right term converges to P(D > q).

• So if coP(D ≤ q)− cu(1− P(D ≤ q)) < 0...

• ...then f(q) is decreasing, otherwise it is increasing

• So minimum occurs when

q∗ = inf

{
q : P(D ≤ q) ≥ cu

co + cu

}

• For continuous D, q∗ = {q : P(D ≤ q) = cu/(co + cu)}.

For TV
c0 = $100

cu = $150

cu
co + cu

=
150

150 + 100
=

3

5
= 0.60

Z ∼ N(0, 1)

6000 + 2000Z ∼ N(6000, 20002)

P(6000 + 2000Z ≤ q) = 0.60

P
(
Z ≤ q − 6000

2000

)
= 0.60

q − 6000

2000
= Φ−1(0.6)

q = 6000 + 2000Φ−1(0.6)

q ≈ 6506.694 . . .
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Should we report bqc or dqe?

• Answer 1: It doesn’t matter–you’re kidding yourself if you think your demand model
is that accurate

• Answer 2: Calculate f(bqc) and f(dqe) and take whichever is smaller.

E(C(D, q)) =

∫ q

0
co · (q − d) · fD(s) ds

+

∫ ∞
q

cu · (d− q) · fD(s) ds.

• For Q of the day:

q = 6506⇒ cost ≈ 106674 + 57028.5

q = 6507⇒ cost ≈ 106734 + 56988.5

Beyond Marginal Analysis

• [Winston 1991] Suppose Seuss Construction is bidding on a job which costs $2
million to complete. Their only competitor bid is believed to be uniform over [2, 4]
million dollars. What should they bid?

• Let B = opponent bid, q = Seuss bid

pro�t = (q − 2)1(q > B) + 0 · 1(q ≤ B)

E(pro�t) = p(q) = E((q − 2)1(q > B))

= (q − 2)P(q > B)

= (q − 2)
4− q
4− 2

=
1

2

[
−q2 + 6q − 8

]
.

• Maximize pro�t:

p′(q) =
1

2
[−2q + 6] p′′(q) = −1

p′(q) = 0⇒ q = 3.

Since second derivative negative any local minimum is a global minimum.

• End result: Should bid $3 million
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Inventory

Question of the Day What should the reorder point and ordering quantity be for a
reorder point inventory model?

Today

• Inventory models

Inventory

• Revolution over the last 20 years

• Global supply chains: giant network of transport

• Just-in-time ordering

• Amazon driven prices down through technology

Factors to consider

• Lag time between when you order and when you receive inventory

• Opportunity cost of lost sales when your inventory empty

• Cost associated with ordering new product

• Cost associated with storing product

Reorder point model

• Constants you can’t control

L = lead time for each order cB = cost for each unit short
K = ordering cost D = total demand for the year
h = holding cost/unit/year
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• Decisions to make

r = reorder point (if inventory below this level, reorder)
q = Amount of inventory to order when reorder

• Simplifying assumption: never lose a sale (customer always comes back for an item)

• Because order takes time to �ll, inventory continues to drop after passing r:

inventory

time0

r = 100

200

reorder

order arrives

reorder

order arrives

q

q

Cycle 1 Cycle 2

Two e�ects

• Minimize cost for holding product: low r low q

• Minimize cost underserved customers: high r high q

TC(q, r) = E(total costs)
= E(holding costs) + E(ordering costs) + E(shortage cost).
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Inventory levels

• Simplifying assumption: Given N customers in cycle, arrival times uniformly dis-
tributed

Fact 31
Consider a cycle from t0 to t1. Let I(t) denote the inventory level at time t. Then when
customer arrivals are uniformly distributed over a cycle and the demand from each
customer is iid, for T ∼ Unif([t0, t1]),

E(I(T )) =
1

2
[E(I(t0)) + E(I(t1)).

Proof. Fix t0 and t1 the start and end of the cycle. Let N be the demand during the cycle.
Then let D1, D2, . . . be the demand (purchase) made by customer i. Then

I(t0)− I(t1) = D1 +D2 + · · ·+DN .

Hence by Wald’s equation

E[I(t1)− I(t0)] = E[Di]E[N ]

Let Ti be the n uniformly distributed times in [t0, t1]. Then

E(I(T )) = E(E(I(T )|N))

= E(E(I(t0)−
N∑
i=1

1(T ≤ Ti)Di|N))

= E(I(t0))− E(

N∑
i=1

E(Di)(1/2))

= E(I(t0))− E(N)

(
N∑
i=1

E(Di)

)
(1/2)

= E(I(t0))− (1/2)(E(I(t0))− E(I(t1)))

= (1/2)E(I(t1) + I(t0))

Holding costs

• At begining of cycle has I(t0)

• Let X be demand between reordering and getting order of q

• So beginning of next cycle, inventory is r −X + q
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• At end of cycle, inventory is r −X

E(I(T )) = (1/2)E[r −X + q + r −X] =
q

2
+ r − E[X].

• This is mean inventory level

E(holding cost) ≈ h(q/2 + r − E(X)).

(Approximate because don’t get “negative holding” when inv. below 0.)

Ordering costs

• D demand a year, so on average, number of orders is about

E[D]

q

(ignores starting/ending inventory)

E(order cost) = k
E[D]

q
.

where k is the cost to reorder.

Shortage cost

• Shortage for a cycle: (X − r)+ = (X − r)1(X − r ≥ 0)

• E(# of cycles) = E[D]/q

• So
E(shortage cost) =

E[D]

q
E[(X − r)+].

Total costs are approximately

h
(q

2
+ r − E(X)

)
+
cBE[D]

q
E[(X − r)+] +

kE[D]

q
.

• Optimize by ocnsidering what happens when r increases by 1

• Holding costs go up by h

• Shortage costs go down by cB(E[D]/q)1(X ≥ r)

• So when they are equal, you have the right r

• Next minimize for q
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Fact 32
The inventory Rule of Thumb: Choose r∗ and q∗ so that

q∗ =
√

2kE(D)/h

P(X ≥ r∗) = hq∗/[cBE(D)].

Next time we’ll do an example!
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Solving Inventory Problems

Question of the Day [Winston 1991 (updated)] A computer store sells a # of memory
cards that is N(1000, 40.82) per year. A regional distributor charges $50 per order
which takes 2 weeks to �ll. Holding costs for 1 year is $10, stockout cost (shortage
cost) is $20. What is the proper reorder point and quantity. (Assume demand is normal
in any time period.)

Today

• Using the reorder point Rule of Thumb

Economic Order Quantity (EOQ)

• Last time, rule of thumb:

q =

√
2kE(D)

h
,

where k is reorder cost, h is holding cost , E[D] is expected demand

QotD

h = $10/card/year
K = $50

E(D) = 1000 cards/year

q =

√
2 · 50 · 1000

10
= 100

• So now we know the quantity, when do we reorder?

• Lead time 2 weeks
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• For our rule of thumb, want

r : P(X ≥ r) =
hq

cBE[D]

=
10 · 100

20 · 10000
= 0.05

• So choose r so that P(X ≥ r) = 0.05

• For normals, subtract mean, dived by sides by standard deviation:

P

X − 1000(2/52)

40.8
√

2/52︸ ︷︷ ︸
N(0,1)

≥ r − 1000(2/52)

40.8
√

2/52

 = 0.05

So want
r − 1000(2/52)

40.8
√

2/52
= Φ−1(0.95)

or equivalently:

r = 1000 · 2

52
+ 40.8

√
2

52
Φ−1(0.95).

(so Φ−1(0.95) is how many standard deviations we are away from the mean) In this
case:

r = 51.2

• Note: since r ≥ E(X), carrying extra stock (on average) to guard against stockouts

De�nition 58
The safety stock is the reorder point minus the expected demand over the reorder time.

Example

• For the question of the day:

safety stock = Φ−1(0.95) · 40.8

√
2

52
= 13.16 .
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Measuring service level

• Previous analysis required that we know cB the stockout cost

– Can be hard to quantify
– What is cost in $ of upset user?

• Alternate way of measuring service

De�nition 59
Service level measure 1 is

SLM1 = E(demand met)/E(demand).

Service level measure 2 is

SLM2 = E(# of cycles/year where shortage occurs).

Example Suppose demand during lead time has following dist:

i P(X = i)

20 0.2
30 0.2
40 0.2
50 0.2
60 0.2

EOQ : q∗ = 100, r = 30

What are SLM1 and SLM2?

• Reorder when inventory at most 30

• If demand is 40, 50 , 60, shortage!

• Chance demand that high is 60%

• Mean demand unmet in a cycle:

Demand 20 30 40 50 60
Demand unmet 0 0 10 20 30

E[demand unmet in cycle] = 0.2(10) + 0.2(20) + 0.2(30) = 12.

E[# of cycles] ≈ mean demand
order amount =

1000

100
= 10

153 184



Mark Huber Notes on Stochastic Operations Research

E(unmet demand) = 12 · 10 = 120.

E(demand) = 1000,

SLM1 =
1000− 120

1000
= 88.00%

(Note that SLM1 is unitless.)

• What is expected number of cycles per year where shortage occurs?

• Each of 12 cycles have 60% chance of shortage

• Binomial number of shortages: SLM2 = (12)(0.6) = 9.6 per year.

Using service level to make decisions

• By raising r (reorder level), raise SLM1, lower SLM2 (That is both good!)

• Let Br be am0ount of unmet demand during a cycle

• Let C be # of cycles in a year.

E[C] =
E[D]

q

E(unmet demand in a year) = E(Br)E(C) =
E(Br)E(D)

q

SLM1 = 1− [E(Br)E(D)/q]/E(D) = 1− E[Br]/q.

• As r goes up, E(Br) goes down, SLM1 goes up.

• As q goes up, SLM1 goes up.

• Need to know dist. of X (demand during lead time) in order to say more.
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Probabilistic Dynamic Programming

Question of the Day Abernathy Grocery has 3 stores in an area, w/ 6 gallons of milk
to distribute. Each gallon sells for $4, or the dairy will buy back for $1 at the end of
the day. Daily demand is:

i Store 1 Store 2 Store 3

1 60% 50% 40%
2 0 10% 30%
3 40% 40% 30%

What is the optimal distribution of milk to stores?

Today

• Probabilistic Dynamic Programming

Dynamic Programming

• Solves problem given by recursion from bottom up

• Example: Fibonacci sequence F (n) = F (n− 1) + F (n− 2)

• Bad way to �nd F (6), recursively:

Fibonacci Input: n

1) a← F (n− 1)
2) b← F (n− 2)
3) Return a+ b
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Fib(6)

Fib(5) Fib(4)

Fib(4) Fib(3) Fib(3) Fib(2)

...

• Lots of repetition, wasted e�ort

• Running time is Θ(F (n)) = Θ(φn)

• A better way: �ll in starting from n = 1 and n = 2 upwards

n 1 2 3 4 5 6

F (n) 1 1 2 3 5 8

• Better way is linear in n

Using this principle with milk

• Recursion more complex

– Store 3 receives either g3 ∈ {0, 1, 2, 3, 4, 5, 6} gal.
– Remaining milk is 6− g3, Remaining stores to distributed to is 2.

• Use linearity of expectation

rt(gt) = expected revenue from store t when it gets gt gal.
ft(x) = max expected revenue for x gal to give to stores 1, 2, . . . , t

• With this notation, qotd becomes: What is f3(6)?
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Bellman equation

• Suppose that I give 2 gal to store 3

• When demand 1, sell a gal to cust, sell one back to dairy

• r3(2) = 40%(1 · 4 + 1 · 4) + 60%(2)(4) = 2 + 4.8 = 6.8

• Then f3(6) ≥ 6.8 + f2(4)

• In fact,
f3(6) = max

g3∈{0,1,2,...,6}
r3(g3) + f2(6− g3).

• This is just the same old decision trees from before as an equation

• More generally:
ft(x) = max

gt
rt(gt) + ft−1(x− gt).

• Called the Bellman equation or dynamic programming equation

• First step: build the reward table for rt(gt):

Reward Table: rt(gt)
Gallons

0 1 2 3 4 5 6

1 0 4 r1(2) = 6.2 8.4 9.4 10.4 11.4
Stores 2 0 4 6.5 7.5 8.5 9.5 10.5

3 0 4 r3(2) = 6.8 8.7 9.7 10.7 11.7

• Now can �nd ft(x)

• First row is just give all gallons to store 1

• Second row maximizes over choice of gallons to store 2

• Example:

f2(3) = max{r2(0) + f1(3), r2(1) + f1(2), r2(2) + f1(1), r2(3) + f1(0)}
= max{0 + 8.4, 4 + 6.2, 6.5 + 4, 7.5 + 0}

Maximum occurs when give 2 gallons to store 2 and 1 to store 1

•

Optimal Table: ft(gt)
Gallons

0 1 2 3 4 5 6

1 0 4 6.2 8.4 9.4 10.4 11.4
Stores 2 0 40 81 10.52 12.72 14.92 15.93

3 0 40 80 121
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• Now work backward to get optimal solution:

1 gal to store 3 (leaves 2 gal), 1 gal to store 2 (leaves 1 gal), 1 gal to store 1.

Notes

• Any recursive equation can be solved using Dynamic Programming

• When using Dynamic programming to maximum expected value, called Probabilistic
Dynamic Programming, or PDP

• Computational complexity

– t choices to make
– m possible values for each choice
– Calculating maximum takes θ(m) time
– Size of table is # of states times t
– Total time Θ(tm2)
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Markov Decision Processes

Question of the Day At the beginning of each week, a machine is either in Excellent,
Good, Average, or Bad shape.
The revenue earned in the week given the state is:

E = $100, G = $80, A = $20, B = $10.

At the beginning of each week, it is possible to instantaneously return the state to
excellent at a cost of $200. What should the repair policy be if the machine state
evolves as a Markov chain with:

E G A B

0.3 0.3 0.4

0.7 1

0.7 0.6

Today

• Markov chains

• Markov decision processes

Markov decision process

De�nition 60
A discrete time stochastic process X0, X1, X2, . . . is a Markov chain if

(∀t)([Xt|X0, . . . , Xt−1] ∼ [Xt|Xt−1]).
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• Idea: Xt only depends on Xt−1, not on total history

Example

• Say D1, D2, . . . ∼ Unif({−1, 1})

• Then let X0 = 0, Xt+1 = Xt +Dt+1

• Then X0, X1, X2, . . . for a Markov chain

• [Xt|X0, . . . , Xt−1] ∼ [Xt|Xt−1] ∼ Unif({Xt−1 − 1, Xt−1 + 1})

De�nition 61
A Markov decision process (MDP) consists of

1. State space: Ω which is �nite.

2. Decision set: For each i ∈ Ω, a set of decisions D(i).

3. Transition probabilities. Use notation:

(∀i, j)(P(Xt+1 = j|Xt = i, d) = p(j|i, d))

4. Expected Rewards: Start in state i and make decision d, expected reward is rid.

Qotd

1. Ω = {E,G,A,B}

2. D(i) = {replace,do not replace} = {R,NR}

3. p(j|i, d) :

NR

next state j
E G A B

E 0.7 0.3 - -
current state G - 0.7 0.3 -

i A - - 0.4 0.6
B - - - 1

R

j
E G A B

E 0.7 0.3 - -
G 0.7 0.3 - -

i A 0.7 0.3 - -
B 0.7 0.3 - -

Now can calculate the expected rewards from each decision and current state:

• Example: if current state G, no repair, make $50

• Example: if current state A (or anything), and repair, make $100-$200 = -$100
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• Altogether:

R NR
E -100 100

i G -100 80
A -100 50
B -100 10

De�nition 62
A policy is a rule that speci�es how each period’s decision is made.

De�nition 63
A policy is stationary if the decision only depends on the current state, and not past
history.

For an MDP, no reason not to use a stationary policy!

In�nite time horizon

• Think about model running in�nite # of steps

• That makes all expected returns in�nite!

• Here are two ways to deal with that:

1. Maximize average expected reward per period

E
(

lim
n→∞

rewards from period 1, . . . , n

n

)
2. Discount future reward

reward k in future = βk · reward now

(Here β ∈ (0, 1).)

• Re�ects uncertainty in future

• Max reward in one period is 100

• So max average reward also 100

• Max discounted reward:

100 + β100 + β2100 + · · · = 100

1− β
.
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Goal

• Let δ be a policy, and ∆ the set of all policies.

Xt = state of MDP at beginning of period t
X1 = initial state
dt = decision made under policy δ at period t given X1, . . . , Xt

Vδ(i) = expected total discounted reward under δ w/ X1 = i

• So

Vδ(i) = Eδ

( ∞∑
t=1

βt−1rXt,dt |X1 = i

)
.

• Let V (i) be maxδ∈∆ Vδ(i) (or min as appropriate)

• This is an in�nite dimensional optimization problem!

De�nition 64
If δ∗ satis�es (∀i ∈ Ω)(V (i) = Vδ∗(i)), then δ∗ is an optimal policy.

Fact 33
(Blackwell 1962) If the rij values are bounded, then an optimal policy exists, moreover a
stationary optimal policy exists.

Consequences

• Don’t have to check all policies, only stationary ones!

• For QotD, −100 ≤ rid ≤ 100 so some stationary optimal policy exists.

• Only 24 possible stationary policies!

• Brute force method:

1. Evaluate Vδ(i) for all i ∈ S, δ ∈ ∆stat

2. Pick the best

Better ways

1. Policy iteration

2. Linear Programming

3. Value iteration
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Finding average reward

Question of the Day

E

$100

G

$80

A

$20

B

$10

0.3 0.3 0.4

0.7 1

0.7 0.6

What policy maximizes average reward?

Today

• Average reward

General decision rule

• Choose decision d when state is i w/ probability qi(d)

• Let πi denote the fraction of time that the state is i

• Then πid = πiqi(d) is the fraction of time that we are in state i, and make decision d

• Goal: max expected reward per period. Let N = #Ω.

N∑
i=1

∑
d∈D(i)

πidrid.
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• Since πid are fractions of time, have

∀i, d, πid ≥ 0 and
N∑
i=1

∑
d∈D(i)

πid = 1.

• Key idea is steady state constraint:

Fraction of time leave j = Fraction of time enter j

In equation form:

πj · P(leave j) =
∑
i 6=j

πi · P(move from i to j).

∑
d∈D(j)

πjqj(d)(1− p(j|j, d)) =
∑
i 6=j

∑
d∈D(i)

πiqi(d)p(j|i, d)

∑
d∈D(j)

πjd(1− p(j|j, d)) =
∑
i 6=j

∑
d∈D(i)

πidp(j|i, d)

Distribute and bring −
∑
πjdp(j|j, d) over to the other side:∑

d∈D(i)

πjd =
∑
i

∑
d∈D(i)

πidp(j|i, d).

• That’s a linear constant!

• Linear program:

maximize
N∑
i=1

∑
d∈D(i)

πidrid

subject to
N∑
i=1

∑
d∈D(i)

πid = 1∑
d∈D(i)

πjd =
∑
i

∑
d∈D(i)

πidp(j|i, d)

πid ≥ 0 for all i, d

Qotd

164 184



Mark Huber Notes on Stochastic Operations Research

• There are four states, and two decisions for each state, so 8 decision variables

max z = 100πE,NR + 80πG,NR + 50πA,NR + 10πB,NR

− 100πE,R − 100πG,R − 100πA,R− 100πB,R

s.t. πE,NR + πG,NR + πA,NR + πB,NR + πE,NR + πG,NR + πA,NR + πB,NR = 1

(E state) πE,NR = 0.7(πE,NR + πE,R + πG,R + πA,R + πB,R)

(G state) πG,NR + πG,R = 0.3(πG,R + πA,R + πB,R + πE,NR + πE,R) + 0.7πG,NR

(A state) πA,R + πA,NR = 0.3πG,NR + 0.6πA,NR

(B state) πB,R + πB,NR = πB,NR + 0.4πA,NR

πi,d ≥ 0

• The optimal LP solution has z = 60 using

πE,NR = 0.35, πG,NR = 0.50, πA,R = 0.15, all others 0.

• Note for each state, only one decision has πi,d > 0!

Fact 34
The LP for �nding average reward always has an optimal solution where there is a
unique d(i) such that πi,d(i) > 0 or πi = 0.

Back to qotd...

• πE,NR > 0, πE,R = 0. So never repair when in E!

• πG,NR > 0, πG,R = 0. So never repair when in G!

• πA,R > 0, πA,NR = 0. So always repair when in A!

• πB,R = πB,NR = 0⇒ πB = 0.

• With this setup, never return to B once you repair!

• Optimal policy is stationary:

δ(E) = NR, δ(G) = NR, δ(A) = R, δ(B) = R.

Discount versus average

• Use average when you know t is large, situation stable (For instance machine working
on factory �oor)

• Use discount when future more uncertain
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Value iteration approach

• This is another way to �nd optimal policies

• Let Vt(i) denote the biggest average reward that you can acheive in t rounds starting
from state i

• If at state i, you make decision d, get average reward in rounds 2, . . . , t of:

rid + β
n∑
i=1

p(j|i, d)Vt−1(j).

Note the factor of β discounts the future rewards.

• So the best you can do is to pick the decision that maximizes this:

Vt(i) = max
d∈D(i)

{
rid + β

n∑
i=1

p(j|i, d)Vt−1(j)

}

• Just start with V0(i) = 0, and run this recursion forward to converge to the best
solution!

Fact 35
Let d∗t (i) denote the optimal decision to make at state iwith t steps, and δ∗(i) the optimal
decision with an in�nite horizon. Then

lim
t→∞

d∗t (i) = δ∗(i).

Eventually this method converges to the right solution...
Problem is, no way to know if convergence has occured!
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Variance Reduction

Question of the Day Suppose X1, X2, . . . are iid Unif([0, 1]) and I want to estimate
E(X2

i ) through simulation. Can I do better than just generatingX1, . . . , Xn and using

X2
1 +X2

2 + · · ·+X2
n

n
?

Today

• Variance Reduction

• Antithetic Variables

Antithetic Variables

• Idea: try to introduct negative correlation between variables

• Recall:
V(X + Y ) = V(X) + V(Y ) + 2 Cov(X,Y ).

• The correlation has the same sign as the covariance:

Cor(X,Y ) =
Cov(X,Y )

SD(X) SD(Y )
.

Example

• What is E(X), X ∼ Unif([0, 1])?

1. Draw X1, . . . , Xn ∼ Unif([0, 1]) iid
2. Let

µ̂n =
X1 + · · ·+Xn

n

• Recall: X,Y independent means Cov(X,Y ) = 0 so V(X + Y ) = V(X) + V(Y )
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• Then

V(µ̂n) =
n∑
i=1

V(Xi)

n2
=
nV(X1)

n2
=

V(X1)

n
.

Better idea

• Draw X1 ← Unif([0, 1])

• Then make X ′1 ← 1−X1

• Estimate E(X) with
X1 +X ′1

2
=
X1 + 1−X1

2
=

1

2

• Right answer every time!

• Why?

Cov(X1, X
′
1) = E(X1X

′
1)− E(X1)E(X ′1)

= E(X1(1−X1))− E(X1)2

= E(X1)− E(X2
1 )− E(X1)2

= 1/2− 1/3− (1/2)2 = −1/12

V(X1 +X ′1) = V(X1) + V(X ′1) + 2 Cov(X1, X
′
1)

=
1

12
+

1

12
− 2

1

12
= 0.

• Negative correlation reduces the variance of the sum

• Idea; When f(U) monotonic in U , average U and 1 − U to decrease variance of
average

De�nition 65
Call U and 1− U antithetic variables.

Note

• Usually generation of random variables slowest part of simulation

• So can get 1− U from U without much extra e�ort
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Qotd

• Want to estimate E[X2
i ]

• X2
i monotonic in Xi for Xi ∈ [0, 1]

• First look at original variance:

V(X2
i ) = E[X4

i ]− E[X2
i ]2

=

∫ 1

0
s4 ds−

[∫ 1

0
s2 ds

]2

=
1

5
− 1

32
=

4

45
.

• Now for the variance of antithetic. Let

W =
U2 + (1− U)2

2
.

V (W ) = V(U2)− V(U)

=
4

45
− 1

12

=
1

180
.

• Note that
VU2

V(W )
= 16.

• So roughly speaking, you have to take 16 times as many samples to get the equivalent
level of accuracy!

Exponentials

• Recall that for an M/M/1 queue, interarrival and service times are exponentially
distributed.

• One way to generate an exponential of rate λ:

U ← Unif([0, 1]), A← − 1

λ
ln(U).

• So if one simulation uses U1, U2, . . ....

• A second simulation could use 1− U1, 1− U2, . . . to decrease variance
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• Suppose we want to estimate the mean exponential of rate 1

V
(
− ln(U)− ln(1− U)

2

)
=

[
1

4
E
[(
− ln(U)− ln(1− U))2

)]
− 12

]
E[ln(U(1− U))2] = E[ln(U)2 + ln(1− U)2 + 2 ln(U) ln(1− U)]∫ 1

0

ln(u)2 du = 2 (integration by parts)∫ 1

0

ln(u) ln(1− u) du = 2− π2

6
(improper at both ends)

V
(
− ln(U)− ln(1− U)

2

)
=

1

4

(
2 + 2 + 2

(
2− π2

6

))
− 1

= 1− π2

12

Try it in R

x <- runif(10000)
> mean(-log(x))
[1] 0.9873291
> mean((-log(x)-log(1-x))/2)
> var((-log(x)-log(1-x))/2)
> var(-log(x))
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ChapterA

Probability review

A.1 Elementary facts
Combinatorics The number of ways to arrange n objects in order is n factorial:

n! = n(n− 1)(n− 2) · · · 1,

where 0! = 1. The number of ways to choose r objects from n objects is:(
n

r

)
=

n!

r!(n− r)!
.

For n1 + n2 + . . . nr = n, the number of ways to choose n1 objects of type 1, n2 objects
of type 2, up to nr objects of type r, is(

n

n1, n2, . . . , nr

)
=

n!

n1!n2! · · ·nr!
.

De�nitions These are the basic de�nitions for talking about probability.
The set of outcomes is called the sample space or outcome space, and is usually denoted

Ω.
An event is a subset E of Ω such that P(E) is de�ned (an event is also sometimes called

a measurable subset). When A is an event, the complement of A is also an event. Also if
A1, A2, . . . is a sequence of events, then ∪∞i=1Ai is also an event. (Any set of events with
these properties is called a σ-algebra or σ-�eld.)
P is a function that given an event A, outputs the probability that the outcome lies in A.
The events A and B are disjoint or mutually exclusive if A ∩B = ∅.

Measures A probability is a special type of measure that obeys the following four rules:

1. For event B, 0 ≤ P(B) (probabilities are nonnegative real numbers)

2. P(∅) = 0 (the probability nothing happens is zero).
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3. For B1, B2, . . . disjoint events,

P (∪∞i=1Bi) =
∞∑
i=1

P(Bi).

4. P(Ω) = 1 (the probability that something occurs is 1).

Simple facts Some basic facts follow from these rules.
Prop: 0 ≤ P(A) ≤ 1.
Prop: P(AC) = 1− P(A).
Prop: P(A ∪B) = P(A) + P(B)− P(AB)
Prop: P(∅) = 0.

Aword about intersection For setsA andB, the intersection ofA anB can be denoted
A ∩B, AB, or A,B. All of these notations mean the same thing:

A ∩B := {x : x ∈ A and x ∈ B}.

Conditional probabilities If P(B) > 0, the conditional probability of A given B is

P(A|B) =
P(AB)

P(B)
.

Bayes’ Formula If F1, . . . , Fn are disjoint and ∪ni=1Fi = Ω, then

P(Fi|A) =
P(A|Fi)P(Fi)

P(A|F1)P(F1) + . . .P(A|Fn)P(Fn)
.

Random variables A random variable is a function of the outcome. The values the
random variable can take on are called states, and lie in the state space. In other words, a
random variable is a function from the sample space to the state space.

For a discrete random variable X ∈ {x1, x2, x3, . . .}, the expected value of X is

E[X] =
∞∑
i=1

xiP(X = xi).

For a continuous random variable X ∈ R with density fX , the expected value of X is

E[X] =

∫ ∞
−∞

sfX(s) ds.

For any two random variables X and Y ,
E[X + Y ] = E[X] + E[Y ].

For two random variables X and Y are uncorrelated if and only if
E[XY ] = E[X]E[Y ].

Independent random variables (see below) are always uncorrelated, but uncorrelated
random variables are not always independent!
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Independence Two events A and B are independent if

P(AB) = P(A)P(B)⇔ P(A | B) = P(A).

Two random variables X and Y are independent if for any event X ∈ A and Y ∈ B,

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B).

A.2 A short guide to solving probability problems
Equally likely outcomes. If all outcomes are equally likely,

P(E) =
number of outcomes in E
total number of outcomes .

Trick #1: Use complements. It is often easier to �nd P(AC) then P(A), remember

P(A) = 1− P(AC).

Trick #2: Use independence to turn intersections into products. If we want the
probability of the intersection of A1, . . . , An, then we can break it apart only when the
events are independent:

P(A1 · · ·An) = P(A1)P(A2) · · ·P(An).

Trick #3: Use disjointness to turn unions into sums. If the events A1, . . . , An are
disjoint,

P(A1 ∪ · · · ∪An) = P(A1) + P(A2) + . . .P(An).

Trick #4: Use Principle of In/Ex to deal with any union. We can always break apart
unions of events A1 . . . An using the Principle of Inclusion/Exclusion, which we use most
often when n = 2:

P(A1 ∪A2) = P(A1) + P(A2)− P(A1A2).

Its easier to say the Principle of Inclusion/Exclusion in words than symbols: the probability
of any event occurring is the sum of the probabilities that one event occurs minus the sum
of the probabilities that 2 events occur plus the sum of the probabilities that 3 events occur
etcetera until we reach the probability that all events occur.

Trick #5: Use De Morgan’s Laws to covert unions and intersections. Convert back
and forth between union and intersection using De Morgan’s Laws:

(A1A2 · · ·An)C = AC1 ∪AC2 · · · ∪ACn ,

(A1 ∪A2 ∪ · · · ∪An)C = AC1 A
C
2 · · ·ACn .
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Trick #6: Use Bayes’ Formula to reverse conditional probabilities. If you know
P(A | Fi) for all i as well as P(Fi), and want P(Fi | A), then use Bayes’ Formula.

Trick #7: Acceptance/Rejection Method 1 Suppose that we perform a trial which if
successful, has outcomes A1, . . . , An. If we fail, then we try again until one of A1 through
An occur. Then

P(Ai occurs on �nal trial ) = P(Ai on �rst trial)|�rst trial a success) =
P(Ai on �rst trial)

P(textfirsttrialasuccess)
.

Trick #8: Acceptance/Rejection Method 2 The other way to tackle acceptance rejec-
tion problem is using in�nite series. Remember, when |r| < 1,

∞∑
i=0

ri =
1

1− r
.

Common errors Some things to watch out for! Events use complements, unions, and
intersections. A statement like P(A)C doesn’t make sense, since P(A) is a number. What
was probably meant was P(AC). Similarly, use +, - and times for numbers like probabilities,
and never for sets. We haven’t de�ned A + B, what was probably intended was P(A)+P(B).

Steps to a problem: If you don’t know how to get started on a problem, the following
steps usually can get you going:

(1) Write down the sample space. Even if you can’t write down the whole sample space,
write down some of the outcomes. Make up symbols, like H for head or T for tails or W
for win and L for a loss to make writing outcomes easier.

(2) Write down the events that you are given probabilities for, and the event that you
are trying to �nd the probability of (the target event).

(3) See if you can express the target event in terms of union, intersection, or complements
of the events that you are given (here is where the �ve tricks come into play).

Simple checks on an answer: Make sure that your �nal probabilities lie between 0
and 1. If you know that a set of probabilities must add to 1, then check by actually adding
them. If you have a simple intuitive reason to believe that A is more likely than B, check
that P(A) > P(B).

A.3 A short guide to counting
Order matters When order matters, then there are n! ways to order n objects.

Thinking about n choose k. There are several ways of thinking about
(
n
k

)
, all of which

are equivalent.

1. It’s the number of the ways to choose a subset of size k from a set of size n.
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2. It’s the number of ways to order a group of letters A . . . AB . . . B where A appears
k times and B appears n− k times.

3. Given n spaces, it’s the number of ways to mark k of those spaces in some way.

4. It’s the number of ways of choosing k out of n trials to be successful.

Multichoosing Now
(

n
n1,...,nr

)
is similar, in that it generalizes

(
n
k

)
. This is because(

n
k

)
=
(
n

n−k
)
. The number n multichoose n1, n2, . . . , nr counts the following.

(1) It’s the number of the ways to choose a partition of a set of size n where the �rst
subset has size n1, the second n2, etcetera.

(2) It’s the number of ways to order a group of letters A1 . . . A1A2 . . . A2 . . . Ar . . . Ar
where Ai appears ni times.

(3) Given n spaces, it’s the number of ways to mark n1 of those spaces with a 1, n2

spaces with a 2, up to nr spaces with nr .
(4) Suppose each trial has r di�erent outcomes. Then its the number of ways of choosing

n1 trials to have outcome 1, n2 trials to have outcome 2, up to nr trials having outcome r.

When all else fails. Almost any problem can be written as a problem with ordering. If
you are uncomfortable with n choose r or can’t �gure out what should be ordered and
what shouldn’t then give everything in your problem a number and order everything.

For example, what’s the probability of choosing a given �ve card hand from a set of 52
cards? One way: number of outcomes is 1, total number of outcomes is

(
52
5

)
, so

P(hand) =
1(
52
5

) .
Another way: number all the cards 1, . . . , 52 and order them in any one of 52! ways. Then
any outcome where the �ve cards we are interested in appear �rst in the ordering of cards
works. There are 5! ways to order these cards and (52 - 5)! ways to order the remaining 47
cards, so the total number of outcomes is 5!(47!), so

P(hand) =
5!47!

52!
,

which is the same answer as the other way.
Another example: given a random ordering of the letters MIIIISSSSPP, what’s the

probability that it spells MISSISSIPPI? Think about numbering every symbol, so we are
ordering x1x2x3x4x5x6x7x8x9x10x11, where x1 = M , x2 through x5 equal I , etc. Then
the total number of outcomes is 11!. The number of outcomes that are successful? Well x1

has to be in �rst position, x2, x3, x4 and x5 have to occupy positions 2, 5, 8, and 10 (which
they can do in 4! ways, there are 4! ways to order the xi that equal S and 2! ways to order
the xi that equal P . So

P(MISSISSIPPI) =
1!4!4!2!

11!
.
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A.4 How to find E[X]
Step 1 Find the values thatX can take on with positive probability (this is called the posi-
tive support ofX). IfX is discrete, this will be either a �nite number of values {x1, . . . , xn}
or a countable number of values {x1, x2, . . .}. If X is continuous, it could be an interval or
union of intervals, like (0,∞) or (3, 4) ∪ [10, 15).

Step 2 Use the right formula. If X is discrete, then E[X] is the sum over all values of
x such that P(X = x) > 0 of the outcome times the probability. So if X ∈ {x0, x1, . . .},
then

E[X] =
∑

x:p(x)>0

xp(x) =
∞∑
i=1

xiP(X = xi).

If X is continuous with density fX then

E[X] =

∫
R
xfX(x) dx.

If X ∈ {0, 1, 2, 3, . . .}, then the Tail Sum Formula gives an alternate way to �nd the
expected value:

E[X] =
∞∑
i=0

P(X > i).

If X is continuous and P(X ≥ 0) = 1, then the Tail Sum Formula is

E[X] =

∫ ∞
x=0

P(X > x) dx.

Conditional expectation To �nd E[A|B], treat B as a constant and calculate the prob-
ability in the exact same way as above. For all random variables A and B:

E[E[A|B]] = E[A].

Note: If we wish to �nd E[g(X)] then use

E[g(X)] =
∑

x:P(X=x)>0

g(x)P(X = x) =
∞∑
i=1

g(xi)P(X = xi),

and
E[g(X)] =

∫
R
g(s)fX(s)ds.

For uncorrelated random variables, E[XY ] = E[X]E[Y ]. Independent random variables
are uncorrelated, but uncorrelated random variables might not be independent.

Some properties of expected value:

• For any two random variables (correlated or uncorrelated) E[X+Y ] = E[X]+E[Y ].
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A.5 How to find V(X)
Method 1: Use

V(X) = E[X2]− (E[X])2.

Method 2: Use
V(X) = E[(X − E[X])2].

Some properties

• For uncorrelated random variables, V(X + Y ) = V(X) + V(Y ).

• For random variable X and constant α ∈ R, V(αX) = α2V(X), SD(αX) =
α SD(X).

A.6 Distributions
The distribution of a random variable is a complete listing of P(X ∈ A) for all sets A of
interest. The distribution also referred to as the law of X , and denoted L(X). When X
and Y have the same distribution, this is denoted

X ∼ Y, or L(X) = L(Y ).

The distribution function of a random variable X (also known as the cumulative distribu-
tion function) is

F (a) = P(X ≤ a).

This is a function that is bounded, that is, it always lies between 0 and 1. It is also right con-
tinuous, that is if a1, a2, a3, . . . decrease and their limit is a, then limit of F (a1), F (a2), . . .
equals F (a).

Because of a theorem from measure theory called the Carathéodory Extension Theorem,
knowing F allows computation of P(X ∈ A) for any A of interest. In particular, if
A = (a, b], then P(X ∈ A) = F (b)− F (a). (Looks a bit like the fundamental theorem of
calculus, which is one reason why F is always capitalized when used for the distribution
function.)

More precisely, if FX is the distribution function ofX and FY is the distribution function
of Y , then

L(X) = L(Y )⇐⇒ FX(a) = FY (a) ∀a.

If X is discrete then the graph of F (a) will have jumps, if X is continuous then F (a)
will be continuous. Some more formulas that come in handy:

P(a < X ≤ b) = F (b)− F (a)

P(a < X < b) = F (b)− F (a)− P(X = b)

P(a ≤ X < b) = F (b)− F (a)− P(X = b) + P(X = a)

P(a ≤ X ≤ b) = F (b)− F (a) + P(X = a).
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Remember that for continuous random variables P(X = s) = 0 for any s, so the right
hand side of these formula just becomes F (b)− F (a). Also for continuous X ,

f(a) =
dF (a)

da

and
F (a) =

∫ a

−∞
f(a)da,

where f(x) is the probability density function (sometimes just called the density) of X .
Finally, say that X1, X2, . . . are independent identically distributed, or iid, if they are

independent and all have the same distribution.

A.7 Discrete distributions
A random variable is discrete if it only takes on a �nite or countably in�nite number of
values. The distribution of a discrete random variable is also called discrete in this instance.

Uniform Written: Unif({1, . . . , n}). The story: roll a fair die with n sides.

P(X = i) =
1

n
1(i ∈ {1, . . . , n})

E[X] =
n+ 1

2

V(X) =
(n− 1)(n+ 1)

12

Bernoulli Written: Bern(p). The story: �ip a coin that comes up heads with probability
p, and count the number of heads on the single coin �ip. Also, the number of successes in
a single trial where the trial is a success with probability p.

P(X = 1) = p, P(X = 0) = 1− p
E[X] = p

V(X) = p(1− p).

Binomial Written: Bin(n, p). The story: �ip iid coins n times where the probability of
heads is p and count the number of heads. Also, the number of successes in a single trial
where the trial is a success with probability p. Also if X1, . . . , Xn are iid Bern(p), then
X = X1 +X2 + . . . Xn ∼ Bin(n, p).

P(X = i) =

(
n

i

)
pi(1− p)n−i1(i ∈ {{0, . . . , n})

E[X] = np

V(X) = np(1− p).
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Geometric Written: Geo(p). The story: �ip iid coins with probability p of heads and
counting the number of �ips needed for one head. Also, the number of trials needed for 1
success when the probability of success at each trial is p and each trial is independent.

P(X = i) = (1− p)i−1p1({0, 1, . . .})

E[X] =
1

p

V(X) =
1− p
p2

.

Negative Binomial Written: NegBin(r, p). The story: �ipping iid coins with probability
p of heads and counting the number of �ips needed for r heads to arrive. Also, the number
of trials needed for r successes when the probability of success at each trial is p and each
trial is independent.

Also X = X1 +X2 + . . . Xr , where Xi are iid and distributed as Geo(p).

P(X = i) =

(
i− 1

r − 1

)
pr(1− p)i−r1({0, 1, . . .})

E[X] =
r

p

V(X) = r
1− p
p2

.

Hypergeometric Written: Hypergeo(N,m, n). The story: drawing n balls from an urn
holdingm green balls andN −m blue balls and counting the number of green balls chosen.

P(X = i) =

(
m
i

)(
N−m
n−i

)(
N
n

) 1({0, 1, . . . , n})

E[X] =
nm

N

V(X) =
N − n
N − 1

np(1− p).

Zeta Written: Zeta(α). A.k.a. Zipf or power law. The story: things like city sizes and
incomes have Zeta distributions.

P(X = i) =
C

iα+1
1({1, 2, . . .})

E[X] = no closed form
V(X) = no closed form.
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Special notes: Except for special values of α like 1, we do not have a closed form solution
for the value of C , the normalizing constant. Choose C so that

∑∞
i=1 P(X = i) = 1.

Similarly, there are no closed form solutions for E[X] or V(X). These must be evaluated
numerically. When α < 1, E[X] does not exist (or is considered in�nite). Similarly, when
α < 2, Var(X) does not exist (or can be considered in�nite).

Poisson Written: Pois(µ). The story: given that the chance of an arrival in time t to t+dt
is λ dt, and µ = λT , then this is the number of arrivals in the interval [0, T ]. X1, X2, . . .,
it is

max
i
X1 +X2 + . . .+Xi < 1.

P(X = i) = e−µ
µi

i!
1({0, 1, . . .})

E[X] = µ

V(X) = µ.

A.8 Continuous Distributions
A random variable is continuous if P(X = a) = 0 for all a. The distribution of a continuous
random variable is also called continuous.

Uniform (continuous) Written: Unif(A). The story: a point is uniform over A if for
all B ⊆ A, the chance the point falls in B is the Lebesgue measure of B divided by the
Lebesgue measure of A. For general A:

f(x) =
1

Lebesgue measure of A1(x ∈ A)

When A = [a, b], more speci�cally:

f(x) =
1

b− a
1(x ∈ (a, b])

F (x) =
x− a
b− a

1(x ∈ [a, b]) + 1(x > b)

E[X] =
b+ a

2

V(X) =
(b− a)2

12

Normal Written: N(µ, σ2). The story: when you sum variables with �nite mean and
standard deviation together, they are well approximated by a normal distribution.
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f(x) =
1

σ
√

2π
e−

1
2(x−µσ )

2

F (x) = Φ

(
x− µ
σ

)
E[X] = µ

V(X) = σ2

Addition of normals. Adding independent normal random variables gives back another
normal random variable. If Xi ∼ N(µi, σ

2
i ), and X = X1 +X2 + . . .+Xn, then

X ∼ N

(∑
i

µi,
∑
i

σ2
i

)
.

For X,Y independent N(0, 1) random variables, the joint distribution of (X,Y ) is
rotationally invariant.

Normal random variables are symmetric around µ, and so Φ(x) = 1− Φ(−x).

Exponential Written: Exp(λ). What it is: when events occur continuously over time at
rate λ, this is the time you have to wait for the �rst event to occur.

f(t) = λe−λt1(t ∈ (0,∞))

F (t) =

{
1− e−λt a ≥ 0
0 a < 0

E[X] =
1

λ

V(X) =
1

λ2

A.9 How to use the Central Limit Theorem (CLT)
The CLT says that if X1, X2, . . . are identically distributed random variables and Zn =
X1 + . . . Xn, then

lim
n→∞

P

(
Zn − E[Zn]√

V(Z)
≤ a

)
= Φ(a).

We use it as an approximation tool for Z = X1 + . . . Xn:

P

(
Z − E[Z]√

V(Z)
≤ a

)
≈ Φ(a).

Often we are interested in approximating the probability of things like P(Z ≤ b) where
Z = X1 + . . . Xn. This takes two steps.

181 184



Mark Huber Notes on Stochastic Operations Research

Step 1 If Z is integral, apply the half integer correction. So instead of P(Z ≤ i) we write
P(Z ≤ i+ 1/2).

Step 2 Subtract o� E[Z] and divide by the square root of Var(Z). So

P(Z ≤ b+ 0.5) = P

(
Z − E[Z]√

V(Z)
≤ b+ 0.5− E[Z]√

V(Z)

)
.

Step 3 Apply the CLT and say

P(Z ≤ b) ≈ Φ

(
b+ 0.5− E[Z]√

V(Z)

)
.
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Chapter B

Proofs of Theorems

B.1 The Mixture Space Theorem

Fact 36 (Mixture Space Theorem, Herstein and Milnor)
A preference relation � on a convex set Π is independent and continuous if and only if
there exists an a�ne utility representation U : Π→ R of �.

Moreover, if U : Π→ R is an a�ne representation of �, then U ′ : Π→ R is an a�ne
representation of � i� there exist a > 0 and b ∈ R such that U ′ = aU + b.

This proof comes from lecture notes of Roee Teper.

Proof: (When a maximum and minimum element exists). Let L∗ be the largest element of
Π and L∗ the smallest. L∗ ≺ L∗ (otherwise all elements are equal and the theorem is
trivially true.)

Step 1 α ≤ β if and only if αL∗ + (1− α)L∗ � βL∗ + (1− β)L∗.
Start with α < β. Note that β > 0. So set γ = α/β ∈ [0, 1] and independence gives us

L∗ = βL∗ + (1− β)L∗ ≺ βL∗ + (1− β)L∗.

Which in turn gives us:

βL∗ + (1− β)L∗ = (1− γ)[βL∗ + (1− β)L∗] + γ[βL∗ + (1− β)L∗]

� (1− γ)L∗ + γ[βL∗ + (1− β)L∗] (independence)

Now
(1− γ) + γ(1− β) = 1− γ + γ − α = 1− α,

so

βL∗ + (1− β)L∗ � (1− α)L∗ + αL∗.

Now suppose α = β. Then the statement is trivially true. Since the argument above also
applies to β < α, the if and only if holds.
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Step 2 Given L ∈ Π, there exists a unique α∗ such that α∗L∗ = (1− α∗)L∗ = L.
The fact that such an α∗ ∈ [0, 1] exists is continuity, the previous step shows that it

must be unique.
Step 3 Create U . For L ∈ Π, let U(L) be the unique α∗ from the previous step.
For any two L and M in Π, the following holds

L �M ⇔ U(L)L∗ + (1− U(L))L∗ � U(M)L∗ + (1− U(M))L∗

⇔ U(L) ≤ U(M).

The �rst equivalence is just the de�nition of U(L) and U(M), the second equivalence is
just Step 1 again.

Step 4 ThisU is a�ne. Consider twoL,M ∈ Π andα ∈ [0, 1]. LetN = αL+(1−α)M .
Then by the way U was de�ned:

U(N)L∗ + [1− U(N)]L∗ =

= N = αL+ (1− α)M

= α[U(L) · L∗ + (1− U(L))L∗] + (1− α)[U(M) · L∗ + (1− U(M))L∗]

= [αU(L) + (1− α)U(M)]L∗ + [1− (αU(L) + (1− α)U(M))]L∗

By uniqueness of the representation

αU(L) + (1− α)U(M) = U(N) = U(αL+ (1− α)M).

Note: Mixture space theorem actually holds over any convex subset of Rn, not just
probability simplex.
Step 6 SupposeU is an a�ne representation of�. ThenU ′ is also an a�ne representation

if and only if there exists a > 0 and b ∈ R such that

U ′ = aU + b.

One direction is straightforward: if U ′ = aU + b, then U ′ is an a�ne, strictly increasing
transformation of U , and so must also represent �.

For the other direction, given U and U ′, let

a =
U(L∗)− U(L∗)

U ′(L∗)− U ′(L∗)
.

This is positive since L∗ ≺ L∗. Let

b = U ′(L∗)− aU(L∗)

Then it is just algebra to show that U ′ = aU + b.
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