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Abstract Consider an estimate â for a with the property that the distribution of the
relative error â/a−1 does not depend upon a, but can be chosen by the user ahead
of time. Such an estimate will be said to have user-specified relative error (USRE).
USRE estimates for continuous distributions such as the exponential have long been
known, but only recently have unbiased USRE estimates for Bernoulli and Poisson
data been discovered. In this work, biased USRE estimates are examined, and it is
shown how to precisely choose the bias in order make the chance that the absolute
relative error lies above a threshold decay as quickly as possible. In fact, for Poisson
data this decay (on average) is slightly faster than if the CLT approximation is used.

1 Introduction

Consider the problem of generating an estimate â for a such that the relative error
(â/a)−1 is bounded by user given ε , with user given failure rate δ .

Definition 1. Call an estimate â for a an (ε,δ )-randomized approximation scheme
or (ε,δ )-ras for nonnegative ε and δ if

P
(∣∣∣∣ âa −1

∣∣∣∣> ε

)
< δ .

A stronger form is that the user actually knows precisely the distribution of the
relative error.
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2 J. Feng and M. Huber and Y. Ruan

Definition 2. Say that an estimate â for a has user-specified relative error or USRE
if the distribution of â/a does not depend on a, but only on parameters specified by
the user in constructing â.

Until recently, the only data distributions with user-specified relative error esti-
mates were continuous and scalable.

Example 1. Say that X has an exponential distribution with rate λ (and mean 1/λ ) if
the density of X is fX (s) = λ exp(−λ s)1(s≥ 0). Write X ∼ Exp(λ ). (Here 1(·) is
the usual indicator function that is 1 if the argument is true and 0 if the argument is
false.) Given X1,X2, . . . ,Xk independent identically distributed (iid) data Exp(λ ), an
unbiased estimate for λ is

λ̂ =
k−1

X1 + · · ·+Xk
.

Say Y has a gamma distribution with shape parameter k and rate λ (write Y ∼
Gamma(k,λ )) if Y has density fY (s) = λ ksk−1 exp(−λ s)1(s ≥ 0)/Γ (k). Then it
is well known that λ/λ̂ has a gamma distribution with shape parameter k and rate
parameter k−1. Therefore λ̂ is a USRE estimate.

Example 2. Say that X is uniform over [0,θ ] (write X ∼Unif([0,θ ])) if X has density
fX (s) = θ−1

1(s ∈ [0,θ ]). Suppose X1,X2, . . . ,Xn are iid Unif([0,θ ]). Then

θ̂ =
n+1

n
max

i
{Xi}

is an unbiased USRE estimate of θ . This is because

θ̂

θ
=

n+1
n

max
i

{
Xi

θ

}
,

and it is well known that Xi/θ ∼ Unif([0,1]). Therefore the maximum of the Xi/θ ,
which is a beta distributed random variable with parameters n and 1, does not depend
on θ̂ in any way. Such a variable has mean n/(n+1), so multiplying by (n+1)/n
makes the estimate unbiased.

Remark 1. Throughout this work, we will always use k to denote the number of
exponential random variables used in constructing our estimate. The variable n
will used more generally to denote the number of samples drawn from any other
distribution.

1.1 Discrete scalable distributions

The output of Monte Carlo algorithms often come from discrete rather than con-
tinuous distributions, and so the creation of user-specified relative error estimates
seemed out of reach for many problems. One feature of Monte Carlo data, however,
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it the ability to generate as much data as needed for the estimate. That is, unlike
fixed length experiments where the data output is X1, . . . ,Xn, it is typically easy with
Monte Carlo output to have a stream of data and use X1, . . . ,XT for some stopping
time T as the final set of data.

By carefully using this advantage and exploiting connections between discrete and
continuous distributions, it was shown how to build unbiased user-specified relative
error estimates for the means of Bernoulli [2] and Poisson [3] iid data.

We open here with a new estimate for the ”German tank problem”, that is, esti-
mation of the integer θ where X1,X2, . . . are independent Unif({1,2, . . . ,θ}) random
variables.

Example 3. Let X1,X2, . . . be iid Unif({1,2, . . . ,θ}). Then it is well known that
for U1,U2, . . . iid Unif([0,1]) and independent of the Xi, that Yi = Xi−Ui are iid
Unif([0,θ ]). Therefore, from Example 2, the estimate

θ̂USRE =
n+1

n
max

i
{Xi−Ui}

is a user-specified relative error unbiased estimate of θ for the {Xi}.
The new estimate smooths the data slightly in order to obtain our USRE for

θ . What do we lose by doing this? The answer is: a little, but not much. Con-
sider the classic minimum variance unbiased estimator for θ . Given X1, . . . ,Xn ∼
Unif({1,2, . . . ,θ}),

θ̂mvue =
1

1+1/n
max

i
{Xi}−1.

The variance of this estimate is

V(θ̂mvue) =
(θ −n)(θ +1)

n(n+2)
.

Compare with the USRE, where

V(θ̂USRE) =
θ 2

n(n+2)

When n� θ , the variances are very close together, but it always holds that the
variance of the mvue is smaller than that of the USRE.

So what is lost is a small amount of variance, What is gained is the ability to
give exact confidence intervals that depend very simply on the data. For instance,
for n = 35, it holds that a beta distributed random variable with parameters n and
1 is within 10% of its maximum value with probability 1− 0.009338. Therefore,
the same holds for θ̂USRE, regardless of the true value of θ . Hence an exact 99%
confidence interval for θ is [θ̂USRE(1−0.1), θ̂USRE(1+0.1)].

Now consider data which is either geometric, Bernoulli, or Poisson. Table 1 gives
the densities for these distributions.
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Distribution Density fX (s) Notation

Bernoulli p1(s = 1)+(1− p)1(s = 0) Bern(p)
Geometric p(1− p)s−1

1(s ∈ {1,2, . . .}) Geo(p)
Poisson [exp(−µ)µs/s!]1(s ∈ {0,1,2, . . .}) Pois(µ)

Table 1 Discrete distributions

Example 4. Consider G1,G2, . . . ,Gn ∼Geo(p), so P(Gi = i) = p(1− p)i−1 for i ∈
{1,2, . . .}. The method of moments estimator for p is

p̂mom =
n

G1 + · · ·+Gn

While biased, this does converge to p with probability 1 as k goes to infinity.
As noted in [2], a USRE is obtained for geometric random variables using the

following well known fact.

Lemma 1. If G∼Geo(p) and [A|G]∼Gamma(G,1), then A∼ Exp(p).

For each Gi, generate [Ai|Gi]∼Gamma(Gi,1). By Lemma 1, each Ai ∼ Exp(p),
and then use p̂ for p from Example 1 to obtain the USRE for p.

Example 5. For B1,B2, . . . iid Bern(p), first use the {Bi} to generate {Gi}.

G1 = inf{t : Bt = 1}, Gi = inf{t : t > Gi−1,Bt = 1}−Gi−1.

Then use the {Gi} to give p̂ from the previous example.
Because this uses Bernoulli random variables together with gamma random

variables to give the estimate, this is known as the Gamma Bernoulli Approximation
Scheme (GBAS). Each geometric requires (on average) 1/p Bernoulli random draws
to generate, so the expected number of Bernoulli random variables used by this
algorithm is k/p.

The final distribution considered here, Poisson, generates a random number of
exponential random variables with each Poisson by using the following well known
fact about Poisson point processes.

Lemma 2. Let P1,P2, . . . be iid Pois(µ). Then for each interval [i, i + 1] for i ∈
{0,1, . . .}, let Ci be a set of Pi values drawn independently and uniformly over [i, i+1].
Let D1 ≤ D2 ≤ ·· · be the sorted values of ∪iCi. Then D1,D2−D1,D3−D2, . . . form
an iid sequence of Exp(µ) random variables.

Example 6. For P1,P2, . . . iid Pois(µ) and fixed k, use Lemma 2 to generate
A1,A2,A3, . . . ,Ak iid Exp(µ) and then proceed as in Example 1. This estimate is
called the Gamma Poisson Approximation Scheme, or GPAS for short.

Each draw of the Poisson generates (on average) µ exponential random variables,
and so between k/µ and k/µ +1 Poisson draws are needed (on average) to generate
the exponential random variables.
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1.2 Main results

Let a denote the mean of the exponential, Bernoulli, geometric, or Poisson data used
to generate a random variable R ∼ Gamma(k,a), where k is chosen by the user.
Then it is simple matter to check that â = (k−1)/R is unbiased.

Since the gamma distribution is skewed, this â estimate is more likely to be too
large than too small in the relative error sense. So a better estimate is

âc =
k−1
cR

,

where c is a fixed constant. When c = 1, the estimate is just â which is unbiased.
By choosing c > 1, it is possible to balance the upper and lower tails and return an
estimate where the relative error is at most ε with failure probability that decays at
the fastest possible rate.

The main result is the following.

Theorem 1. Let
c =

2ε

(1− ε2) ln(1+2ε/(1− ε))
.

and âc = (k−1)/[cR] where R∼Gamma(k,a). Then define

c1 =
1

c(1− ε)
, c2 =

1
c(1+ ε)

, b(t) = te1−t . (1)

Note that b(t)< 1 for t 6= 1 and for this choice of c1 and c2, b(c1) = b(c2), so let b
equal this common value. Then

P
(∣∣∣∣ âc

a
−1
∣∣∣∣> ε

)
≤ 1√

2π(k−1)

[∣∣∣∣ c1

c1−1

∣∣∣∣bk−1 +

∣∣∣∣ c2

c2−1

∣∣∣∣bk−1
]

≤

√
2

πε2(k−1)
exp
(
−(k−1)

(
ε2

2
+

11ε4

36

))
.

By using this choice of c, it is often possible to generate an estimate with bounded
relative error using fewer samples on average than a CLT analysis. For example,
consider P1,P2,P3, . . . iid Pois(µ). The mean and variance of the {Pi} is both µ ,
so consider estimating µ for W1,W2, . . . iid normal with mean and variance µ . The
GPAS algorithm uses on average k/µ samples to generate R∼Gamma(k,µ).

So setting n = bk/µc, the sample average µ̂n = (W1+ · · ·+Wn)∼N(µ,µ/n), and

P(|(µ̂n/µ)−1|> ε)> P(|Z|/
√

k > ε),

where Z is a standard normal random variable. As shown in Section 2.1,

P(|Z|> ε
√

k)≈
√

2
πε2k

exp
(
−k

ε2

2

)
,
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6 J. Feng and M. Huber and Y. Ruan

so when k is large, the probability for the biased Gamma concentrates slightly faster
than for a normal.

For example, when ε = 0.1, to get P(|Z|/
√

k > ε)< 0.01 requires k ≥ 663.4897.
But using the value of c from Theorem 1, the value of k needed using GPAS is 661.
So GPAS requires on average at most 661/µ +1 samples, while the normal requires
at least 663/µ . For small µ then, the biased estimator requires fewer samples on
average than the CLT approach. See Figure 1 for the failure rates as a function of k
for ε = 0.2.
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Fig. 1 Given exponential random variables with rate a, consider an estimate of a a failure if the
relative error of the estimate is greater than ε . Both the problem of estimating the mean of a Bernoulli
and the mean of a Poisson can be converted into this exponential problem. This plot compares the
use of k exponential draws to form the estimate of a. The solid line treats the sample average of the
exponentials as a normal random variable, while the dotted line uses a biased Gamma estimator.
For the same k, the biased Gamma is a better estimator in this sense than the CLT. These particular
failure rates use ε = 0.2. The CLT line has asymptotic slope against the log failure rate (to second
order in ε) equal to −ε2/2. The biased gamma line has asymptotic slope against the log failure rate
(to the fourth order in ε) equal to −ε2/2− (11/36)ε4.

The remainder of this work is organized as follows. The next section reviews
relevant bounds on the tails of gamma and normal distributions, and proves Theo-
rem 1. Finally, Section 3 looks at several applications of these results in Monte Carlo
integration.
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2 Biased estimates for minimizing the failure probability

For both GBAS and GPAS, the first step is generating a random variable R ∼
Gamma(k,a), where a is the quantity to be estimated. Then âc = (k− 1)/(cR)
becomes the estimate. The goal is to make

P
(∣∣∣∣ âc

a
−1
∣∣∣∣> ε

)
= P

(
(k−1)

acR
> 1+ ε or

(k−1)
acR

< 1− ε

)
= P

(
k−1
aR

> c(1+ ε)

)
+P

(
k−1
aR

< c(1− ε)

)

as small as possible. Since (aR)/(k−1)∼Gamma(k,k−1), our work will focus
on developing good bounds for the upper and lower tails of this distribution.

Lemma 3. Let fX (s) = αβ sα−1 exp(−β s)1(s ≥ 0)/Γ (k) be the density of X ∼
Gamma(α,β ). Then

fX (t)
1
β
≤ P(X ∈ A)≤ fX (t)

t
|β t− (α−1)|

.

for A = [0, t] where t < (α−1)/β or A = [t,∞) where t > (α−1)/β .

Proof. Consider for s > 0,

f ′X (s) = fX (s)β
[

α−1
β s
−1
]
.

For s≥ t > (a−1)/β , this gives

−β fX (s)≤ f ′X (s)≤ fX (s)β [(α−1)/(β t)−1]

and
f ′X (s)t/(β t− (α−1))≥ fX (s)≥ f ′X (s)/(−β ).

Integrating these inequalities for s running from t to infinity and 0 to t gives the upper
and lower bounds.

The s≤ t < (α−1)/β case is similar. ut
Now to understand how fX (s) behaves.

Lemma 4. For α = k and β = k−1,

exp(−1/[12(k−1)])

√
k−1
2π

(
te1−t)k−1 ≤ fX (t)≤

√
k−1
2π

(
te1−t)k−1

Proof. Let f1(k− 1) =
√

2π(k−1)((k− 1)/e)k−1. Then Stirling’s bound can be
written
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f1(k−1)≤ Γ (k)≤ f1(k−1)exp(1/[12(k−1)]).

The density of a Gamma(k,k−1) at a is

fX (a) = (k−1)ktk−1 exp(−(k−1)t)/Γ (k).

Using Stirling’s bound on Γ (k) and simplifying gives the result. ut
Let g(t) denote ln(P((k− 1)/(aR) > t)) for t > 1 and ln(P((k− 1)/(aR) < t))

for t < 1. From the previous lemma g(t) = (k− 1)[1− t + ln(t)] plus lower order
terms. Setting w = 1− t gives g(1−w) = (k−1)[w+ ln(1−w)]. The Taylor series
expansion of g(1−w)/(k−1) with respect to w is

w+ ln(1−w) =−w2

2
− w3

3
− w4

4
−·· · .

It is of course no surprise that the leading term of the logarithm of the tail probability
is −w2/2, as a Gamma(k,k− 1) is the sum of k independent Exp(k− 1) random
variables, and therefore the CLT gives that the result is approximately normally
distributed.

In the rest of this section it helps to define two values based on c and ε , as well as
a function that encapsulates our rate. Recall that

c1 =
1

c(1− ε)
, c2 =

1
c(1+ ε)

, b(t) = te1−t

Lemma 5. For âc = (k−1)/(acR), let c1, c2, and b be as in (1). Then P(|(âc/a)−
1|> ε) is in

1√
2π(k−1)

[
b(c1)

k−1 +b(c2)
k−1,

∣∣∣∣ c1

c1−1

∣∣∣∣b(c1)
k−1 +

∣∣∣∣ c2

c2−1

∣∣∣∣b(c2)
k−1
]

Proof. For âc = (k−1)/(cR),

P
(∣∣∣∣ âc

a
−1
∣∣∣∣> ε

)
= P

(
aR

k−1
>

1
c(1− ε)

)
+P

(
aR

k−1
<

1
c(1+ ε)

)
Since aR/(k−1)∼Gamma(k,k−1), the rest follows from the previous two lem-
mas. ut

Since b(t) is a unimodal function with maximum at t = 1 that goes to 0 as t goes to
0 and infinity, the log of the probability in the tail is minimized when b(c1) = b(c2).

Lemma 6. When
c =

2ε

(1− ε2) ln(1+2ε/(1− ε))
, (2)

and âc = (k−1)/(cR), then b(1/(c(1− ε))) = b(1/(c(1+ ε))) = b and

P
(∣∣∣∣ âc

a
−1
∣∣∣∣> ε

)
≤ 1√

2π(k−1)

[
c1

c1−1
+

c2

1− c2

]
bk−1.
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Proof. It is easy to verify that b(c1) = b(c2) for this choice of c. This choice makes
c1 > 1 and c2 < 1. Applying the previous lemma then finishes the proof. ut

It helps to have an idea of how good this bound is in terms of ε . Recall that c1, c2,
and b = b(c1) = b(c2) are all functions of ε .

Lemma 7. For ε > 0,

c1

c1−1
+

c2

1− c2
≤ 2

ε

and

b≤ exp
(
−1

2
ε

2− 11
36

ε
4
)
.

Proof. This follows directly from the Taylor series expansions of these functions in
terms of ε , and the continuity of all higher derivatives for ε > 0. ut

Combining this with the previous lemma gives the following.

Corollary 1. For c as in (2),

P
(∣∣∣∣k−1

acR
−1
∣∣∣∣> ε

)
≤

√
2

πε2(k−1)
exp
(
−ε2(k−1)

2
− 11ε4(k−1)

36

)
.

Therefore the log failure rate is asymptotically at most−(k−1)(ε2/2+(11/36)ε4).
This is smaller than the asymptotic log failure rate of −kε2/2 for a normally dis-
tributed random variable.

2.1 Comparison to normal random variables

A Poisson random variable with mean µ also has variance µ . So consider X1, . . . ,Xn
random variables that are normal with mean and variance µ . In Section 1 it was noted
that for such random variables the sample average µ̂n = ∑i Xi/n satisfies

P(|(µ̂n/µ)−1|> ε) = P(|Z|> ε
√

nµ)

where Z is a standard normal random variable.
Well known bounds connect the tail probabilities of a standard normal with the

density of a standard normal. For instance, Gordon [1] showed that for all s > 0

1
s+1/s

1√
2π

exp(−s2/2)≤ P(Z > s)≤ 1
s

1√
2π

exp(−s2/2) (3)

For s = ε
√

nµ , this says

P(|µ̂n/µ−1|> ε) = Ω(ε−1(nµ)−1/2 exp(−ε
2nµ/2)), (4)
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(Recall that we write f (n) = Ω(g(n)) if limsupn→∞ f (n)/g(n)> 0.) To compare this
to the failure probabilities for the Poisson random variable, note that the average
number of draws of the Poisson is k/µ where k is the parameter set by the user. So if
n≈ k/µ , then the failure probability for the normal random variables will be

Ω(ε−1k−1/2 exp(−ε
2k/2),

while for the gamma based estimate,

P(|p̂/p−1|> ε) = O(ε−1(k−1)−1/2 exp(−[ε2/2+11ε
4/36](k−1)). (5)

So for fixed ε , as k→ ∞, eventually the failure probability will fall below that for the
normals.

As seen in Section 1, this is not some far-off asymptotic range: for ε = 0.1
and δ = 0.01, the gamma based method sets k = 661 but the normals require k >
663 to achieve the same level of accuracy. This fact that gammas are more highly
concentrated than normals about their center is to be expected, as gamma random
variables are always positive while for normals both tails are unbounded.

2.2 Biased beta estimates

Now consider the problem of estimating θ when X1,X2, . . . ,Xn are iid Unif({1,2, . . . ,θ}).
The unbiased smoothing method generated U1, . . . ,Un independent of X1, . . . ,Xn, and
set X ′i = Xi−Ui. This makes X ′i uniform over [0,θ ]. Now an unbiased USRE estimate
of θ is θ̂USRE = [(n+1)/n]maxi(Xi−Ui) (see Example 2.)

As earlier, given ε > 0, the failure probability of an estimate θ̂ for θ is P(|θ̂/θ −
1|> ε). However, the unbiased estimate does not minimize the failure probability.

Instead, note that maxi(Xi−Ui)≤ θ , so θ̂ = (1+ε)maxi(Xi−Ui) can never have
relative error greater than ε . The only way the relative error can be less than −ε is if
(1+ ε)maxi(Xi−Ui)< (1− ε)θ , or equivalently, maxi(Xi−Ui)/θ < (1+ ε)/(1−
ε). Recalling that each (Xi−Ui)/θ ∼ Unif([0,1]), this gives the following lemma.

Lemma 8. Given X1, . . . ,Xn iid uniform over {1,2, . . . ,θ}, and U1, . . . ,Un iid uni-
form over [0,1] (and independent of the {Xi}), let

θ̂ = (1+ ε)max
i
(Xi−Ui)

Then

P(|(θ̂/θ)−1|> ε) =

(
1− ε

1+ ε

)n

.

Since ln((1− ε)/(1+ ε)) = −2ε − (2/3)ε3− ·· · , to first order the number of
samples n necessary for an (ε,δ )-ras is (1/2)ε−1 ln(δ−1), which is very much
smaller than in the exponential or normal cases.
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3 Applications

This section considers applications of the GBAS and GPAS algorithms. Suppose our
goal is to approximate the value of an integral of dimenson m:

I =
∫

x∈Rm
f (x) dx.

Here f (x) ≥ 0 and m is typically very large. For instance, f (x) could be the un-
normalized posterior distribution of a Bayesian model (so prior density times the
likelihood of data) or the solution to some #P complete problem.

Our approach is to build three sets, C ⊆ B⊆ A. Set A will have Lebesgue measure
equal to the integral I. Set C will have Lebesgue measure that can be computed
exactly. Then, random samples will be used to estimate the ratio of the measure of A
to that of B, and the ratio of the measure of B to that of C. The product then estimates
that ratio of the measure of A to that of C, and then multiply by the known measure
of C to estimate the measure of A which is just I.

3.1 Acceptance Rejection Integration

Using acceptance rejection to approximately integrate functions goes back to at least
Von Neumann [6].

For a measure ν , say that X ∼ ν over B, if for all measurable F ⊆ B, P(X ∈ F) =
ν(F)/ν(B).

Given a region A, and a region B that contains A from which is possible to sample
X ∼ ν over B, P(X ∈ A) = ν(A)/ν(B). Usually it is possible to compute either ν(B)
or ν(A) easily. Let p̂ be an estimate for P(X ∈ A) obtained using biased GBAS.

If ν(B) is known, then p̂ν(B) is an estimate for ν(A). If ν(A) is known then
ν(A)/p̂ is an estimate for ν(A). Either way, to obtain ν(A) (or ν(B)) within a fixed
relative error requires that p̂ estimate p within a fixed relative error.

Now consider how this idea can be turned into an algorithm for estimating I.
Suppose that f (x) is known through either analysis or numerical experiments to have
a local maximum at x∗, and f (x)≤ f (x∗) for all x : ||x∗− x||2 ≤ α . Consider three
sets,

A = {(x,y) : x ∈ Rn,0≤ y≤ f (x)}
B = {(x,y) : ||x− x∗|| ≤ α,0≤ y≤ f (x)}
C = {(x,y:||x− x∗|| ≤ α,0≤ y≤ f (x∗)}.

For ν Lebesgue measure, ν(A) = I, the value of the integral that we are looking for.
It is easy to sample from C: just generate x uniformly from the hypersphere about

x∗ of radius α , and then generate y uniformly from [0, f (x∗)].
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Sampling from A is usually (approximately) accomplished using Markov chain
Monte Carlo, or in some instances using perfect simulation (see [7, 4]) methods.

Then B⊆ A and B⊆C. For ν Lebesgue measure, ν(C) = f (x∗)αnVn, where Vn
is the volume of an n dimensional hypersphere under || · ||2.

So the strategy is to use two steps: estimate ν(B)/ν(C) with p̂1, and ν(B)/ν(A)
with p̂2 using biased GBAS. Then ν(C)p̂1/ p̂2 ≈ ν(A) = I, and the relative error
bounds for p̂1 and p̂2 can be used to find a relative error bound for the estimate of
ν(A).

Of course, it is not necessary to know the value of x∗ exactly. As an example,
consider the function f (x) = exp(−x2/2)+1.5exp(−(x−4)2/2). Let x∗ = 0, and
α = 1. For x ∈ [−1,1], f (x) ≤ 1.1. Then A = {(x,y) : 0 ≤ y ≤ f (x)}, B = {x ∈
[−1,1],0 ≤ y ≤ f (x)}, and C = {x ∈ [−1,1],0 ≤ y ≤ 1.1}. Then ν(C) = 2.2, so
ν(A) = 2.2(ν(B)/ν(C))/(ν(B)/ν(A)).

The value of ν(B)/ν(C) can be estimated by sampling points uniformly from C,
and letting the Bernoull random variables be the indicator that the points fall into B.
Similarly, the value of ν(B)/ν(A) can be estimated by drawing samples from A and
letting the Bernoulli random variables be the indcator that the points fall into B.

In this example ν(B)/ν(C)≈ 0.7801 and ν(B)/ν(A) = 0.273886. So for a given
choice of k, on average k/0.7801 samples from C are needed to get p̂1 an estimate
for ν(B)/ν(C), and on average k/0.273886 samples from A are needed to get p̂2 an
estimate for ν(B)/ν(A). Recall k = 661 gives ε = 0.1 and δ = 0.01. Therefore, using
the union bound, 2.2p̂1/p̂2 lies in [(0.9/1.1)ν(A),(1.1/0.9)ν(A)] with probability
at least 98%.

Suppose we use α = 0.1. Then ν(B)/ν(A) ≈ 0.03187, while ν(B)/ν(C) ≈
0.908047. The number of samples needed grows dramatically to get the p̂2 esti-
mate as α becomes smaller.

3.2 TPA Integration

Generally, as α becomes smaller ν(B)/ν(C) typically moves to 1 while ν(B)/ν(A)
becomes smaller. Therefore, it is helpful to have an alternate way to estimate
ν(B)/ν(A) when B is small relative to A. In fact, usually ν(B) is exponentially
smaller than ν(A) in the dimension of the problem.

A solution to this issue is to use the Tootsie Pop Algorithm (TPA) [5]. which
in this context operates as follows. Let A0 = A, and draw a sample X0 from ν over
A0. Let A1 = {(x,y) : ||x− x∗|| ≤ ||X0− x∗||}. Draw X1 from ν over A1 in the same
way to get A2, and continue into this fashion until XT−1 /∈ B and XT ∈ B. That is,
T = inf{i : Xi ∈ B}.

Then Theorem 1 of [5] implies that T −1∼ Pois(ln(ν(B)/ν(A))). GPAS gives
us an estimate â for a = ln(ν(B)/ν(A)), along with exact confidence intervals.
These in turn gives exact confidence intervals for exp(â) which estimates ν(B)/ν(A).
Combined with the exact confidence intervals for ν(C)/ν(B), the result is an exact
confidence interval for the estimate ν(C)p̂1 exp(−â) of ν(A).
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Consider again our problem from earlier of estimating ν(B)/ν(A) when the true
answer is 0.0318787. Recall using k = 661 and directly drawing from A and forming
Bernoullis from the indicator that the points fall in B used on average k/0.0318787
to get an estimate within relative error 0.1 with probability at least 99%.

By using TPA with k = 661, we obtain an estimate for − ln(0.0318787) by
drawing −661/ ln(0.0318787) Poisson random variables, each of which requires
− ln(0.0318787) + 1 draws from various subsets of A. Note (− ln(0.0318787) +
1)/(− ln(0.0318787))≈ 1.290, much smaller than 1/0.0318787≈ 31.37.

However, the error bounds have changed. The estimate must be exponentiated to
get back to the original problem. Letting a =− ln(0.0318787), we will find â such
that â = aξ where ξ ∈ [0.9,1.1] Hence exp(−a) ∈ [exp(−â/0.9),exp(−â/1.1)].

For instance, if â = 3.723 (off from the true value of a = − ln(0.0318787) =
3.445817) then we could say with 99% confidence that exp(a) = ν(B)/ν(A) ∈
[0.01597,0.03390].

This is an exact confidence interval, but does not have relative error of 0.1 as
desired. Using the geometric mean of the endpoints at the best estimate, the relative
error could be up to 0.46. So we obtain an exact confidence interval, but not at the
level of relative accuracy that we desired.

At this point, by knowing a lower bound on ν(B)/ν(A), a second run of TPA
could be undertaken that would guarantee our desired level of accuracy. Details of
this two-phase procedure are given in [5].
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