Monte Carlo with user-specified error

Mark Huber Fletcher Jones Foundation Associate Professor of Mathematics and Statistics and George R. Roberts Fellow Claremont McKenna College 16 Aug, 2016

Supported by NSF grant DMS 1418495

Main results

Main results

Theorem (H. 2013)

Given B_1, B_2, \ldots iid Bern(p) where p is unknown, there exists an estimate $\hat{p}_k = \hat{p}_k(B_1, \ldots, B_T)$ such that the distribution of $p/\hat{p}_k \sim \text{Gamma}(k, (k-1)c)$ for user-specified k and c, and $\mathbb{E}[T] = k/p$.

Theorem (H. 2016)

Given A_1, A_2, \ldots iid $Pois(\mu)$ where μ is unknown, there exists an estimate $\hat{\mu}_k = \hat{\mu}_k(A_1, \ldots, A_T)$ such that the distribution of $\mu/\hat{\mu}_k \sim \text{Gamma}(k, (k-1)c)$ for user-specified k and c, and $\mathbb{E}[T] \in [k/\mu, k/\mu + 1]$.

Main results, part II

Theorem (Feng, H., Ruan 2016)

For both of the previous theorems, setting c = 1 gives an unbiased estimator. Setting

$$c = \frac{2\epsilon}{(1-\epsilon^2)[\ln(1+\epsilon) - \ln(1-\epsilon)]}$$

makes

$$\mathbb{P}(|\textit{relative error}| > \epsilon) \le c_1 \cdot c_2^k$$

where c_2 is as small as possible.

Relative error

 $\frac{\hat{a}}{a} - 1$

By the numbers

Say

p=20%

Suppose want

 $|\mathsf{relat}|$ ive error $| \le 10\%$

Then need

 $18\% \leq \hat{p} \leq 22\%$

New algorithms know relative error distribution

User set k = 5, c = 1 $\mathbb{P}(|\mathsf{rel err}| > 0.1) \approx 92.6\%$

New algorithms know relative error distribution

User set k = 20, c = 1 $\mathbb{P}(|\mathsf{rel err}| > 0.1) \approx 66.1\%$

New algorithms know relative error distribution

Running time

Lemma

Given k, and X_1, X_2, \ldots iid Bern(p), the expected number of draws used by the algorithm is k

$\overline{\mathbb{E}[X_i]}$

Lemma

Given k, and X_1, X_2, \ldots iid $\mathsf{Pois}(\mu)$, the expected number of draws used by the algorithm is in

$$\left[\frac{k}{\mathbb{E}[X_i]}, \frac{k}{\mathbb{E}[X_i]} + 1\right].$$

$A ext{-}O ext{-}k$

Suppose want relative error of 10%

- GBAS (for Bernoulli) and GPAS (for Poisson) user decides k
- Example: if k = 661, then

 $\mathbb{P}(\text{relative error} > 0.1) < 0.01$

▶ If CLT holds perfectly: data X_1, X_2, \ldots iid N (μ, μ) then

k = 664

Randomized approximation schemes

Definition

An estimate \hat{a} for a is an (ϵ, δ) -randomized approximation scheme if

$$\mathbb{P}\left(\left|\frac{\hat{a}}{a} - 1\right| > \epsilon\right) \le \delta.$$

Application

Acceptance/rejection integration

Acceptance/rejection integration used for

Fast approximation of the permanent for very dense problems M. Huber and J. Law. Proc. of 19th ACM-SIAM Symp. on Discrete Algorithms, pp 681–689, 2008

Likelihood-based inference for Matérn type-III repulsive point processes M. L. Huber and R. L. Wolpert Advances in Applied Probability, Vol 41, No 4, pp. 958–977, 2009

High-Confidence estimator of small s-t reliabilities in directed acyclic networks R. Zenklusen and M. Laumanns Networks, Vol 57, No 4, pp. 376–388, 2011

Acceptance/rejection integration

Multiplication leads to relative error

Multiplication leads to relative error

For estimate

 $\hat{a} = \mathrm{SiZe}(B)\hat{p}$

it holds that

relative error in \hat{a} = relative error in \hat{p}

How to get relative error small

For basic estimate:

$$\hat{p}_{BE} = \frac{B_1 + \dots + B_n}{n},$$

- $\mathbb{E}[p_{BE}] = p$, and $\mathrm{SD}(p_{BE}) = \sqrt{p(1-p)/n}$
- ► To make $SD(p_{BE}) = \Theta(\epsilon p)$, need $n = \Theta(\epsilon^{-2}/p)$.
- But we don't know p!

DKLR

An optimal algorithm for Monte Carlo estimation P. Dagum, R. Karp, M. Luby, and S. Ross Siam. J. Comput., Vol 29, No 5, pp. 1484–1496, 2000

- ▶ Idea: Use $\{B_i\}$ to form $\{G_i\}$, where G_1, G_2, \ldots iid Geo(p)
- $\mathbb{E}[G_i] = 1/p, \ \text{SD}(G_i) = (1/p)\sqrt{1-p}$

Use

$$\hat{p} = \left[\frac{G_1 + \cdots + G_k}{k}\right]^{-1}$$

where $k=\Theta(\epsilon^{-2})$ to get relative error below ϵ

Two problems with DKLR

- ▶ Biased estimate (in general $\mathbb{E}[1/X] \neq 1/\mathbb{E}[X]$)
- \blacktriangleright Hard to get correct constant and lower order terms for k

Gamma Bernoulli Approximation Scheme (GBAS)

A Bernoulli mean estimate with known relative error distribution M. Huber Random Structures & Alg., arXiv:1309.5413, to appear.

- Use $\{G_i\}$ to form A_1, A_2, \dots iid Exp(p).
- $\mathbb{E}[A_i] = 1/p$, $\mathrm{SD}(A_i) = 1/p$ (lost factor of $\sqrt{1-p}$)

$$\hat{p}_k = \frac{k-1}{A_1 + \dots + A_k}$$

Nice properties of GBAS

Unbiased

$$\mathbb{E}[\hat{p}_k] = p$$

Relative error

$$p/\hat{p}_k=p/[k-1])A_1+\cdots(p/[k-1])A_k$$
since $pA_i\sim {\sf Exp}(p/(p/(k-1))\sim {\sf Exp}(k-1),$ $p/\hat{p}_k\sim {\sf Gamma}(k,k-1)$

How to get exponentials, part 1

Start with a Poisson point process of rate 1

Here T_1, T_2, \ldots are iid Exp(1)

How to get exponentials, part 2

For each point of the process, flip a Bern(p) coin

How to get exponentials, part 3

Only keep those with Bernoulli draw 1

Result is a Poisson point process of rate p

So A_1, A_2, \ldots iid Exp(p)

Geometric sum of exponentials is exponential

Fact Let $G \sim \text{Geo}(p)$, and $[R|G] \sim \text{Gamma}(G,1)$. Then $R \sim \text{Exp}(p)$.

How big should k be?

Bounding tails of gamma distributions for applications J. Feng, M. Huber, S. Ruan, Y. Zhang preprint, 2016

Short answer: at most $k = 2\epsilon^{-2}\ln(1/\delta) + 1$.

Long answer

 $\frac{$ **Theorem** $}{\textit{For } \epsilon > 0, \ \delta > 0, \ \textit{set}}$

$$c = \frac{2\epsilon}{(1-\epsilon^2)\ln(1+2\epsilon/(1-\epsilon))},$$

and

$$k = 2\epsilon^{-2}\ln(1/\delta) + 1.$$

For $G \sim \operatorname{Gamma}(k, k-1)$,

$$\mathbb{P}\left(\frac{1}{cG} \in [1-\epsilon, 1+\epsilon]\right) > 1 - \delta \frac{1+\epsilon}{\sqrt{\pi \ln(1/\delta)}}$$

Application

Mean of a bounded random variable

Converting mean of bounded r.v. to Bernoulli

Lemma

For

 $U \sim \textit{Unif}([0,1]), X \in [0,c]$

that are independent, then

 $\mathbb{E}[X] = c \mathbb{P}(cU \leq X).$

Application

TPA integration

Acceptance/rejection integration

Often the size of A is very small compared to B, making AR slow

TPA shrinks the set every time we sample. Output Xis number of times before point falls into A. In example, X = 2.

Nice fact:

$$X \sim \mathsf{Pois}\left(\ln\left(\frac{\mathsf{size}(B)}{\mathsf{size}(A)}\right)\right)$$

Estimating Poisson means

The TPA paper with applications:

Random construction of interpolating sets for high dimensional integration M. Huber and S. Schott J. of Applied Probability, arXiv:1112.3692. Vol 51, No 1, pp. 92–105, 2014.

To use TPA to get ratio size(B)/size(A), want estimate for mean of iid $Pois(\mu)$ random variables with exact confidence intervals.

How to turn Poissons into Exponentials

- ▶ Use A_1, A_2, \ldots iid Pois (μ) for Poisson point process rate μ
- ▶ Use $A_i \sim \mathsf{Pois}(\mu)$ to determine how many points in [i-1,i]
- Generate points uniformly in interval

▶ $P_1, P_2 - P_1, P_3 - P_2, \dots$ iid $Exp(\mu)$

Running time

- > After converting to exponentials, use same as with Bernoullis
- Each Poisson draw gives on average μ exponential draws
- ▶ Total Poisson draws for k exponentials is on average in

 $[k/\mu,k/\mu+1]$

Pseudocode for GBAS

Gamma_Bernoulli_Approximation_Scheme Input: k, c Output: \hat{p}_k 1) $S \leftarrow 0, R \leftarrow 0.$ 2) Repeat 3) $X \leftarrow Bern(p), A \leftarrow Exp(1)$ 4) $S \leftarrow S + X, R \leftarrow R + A$ 5) Until S = k6) $\hat{p}_k \leftarrow (k-1)c/R$

Pseudocode for GPAS

Gamma_Poisson_Approximation_Scheme Input: k, c Output: $\hat{\mu}_k$		
1)	$A \leftarrow 0, i \leftarrow 0$	
2)	While $A < k$	[Draw k points.]
3)	$T \leftarrow Pois(\mu)$	
4)	$If A + T \ge k$	[Then have k points.]
5)	$T' \leftarrow i + Beta($	k - A, T - (k - A) + 1)
6)	$A \leftarrow A + T, \; i \leftarrow$	i + 1
7)	$\hat{\mu}_k \leftarrow (k-1)c/T'$	

Main results redux

Theorem

Given B_1, B_2, \ldots iid Bern(p) where p is unknown, there exists an estimate $\hat{p}_k = \hat{p}_k(B_1, \ldots, B_T)$ such that the distribution of $p/\hat{p}_k \sim \text{Gamma}(k, (k-1)c)$ for user-specified k and c, and $\mathbb{E}[T] = k/p$.

Theorem

Given A_1, A_2, \ldots iid $\operatorname{Pois}(\mu)$ where μ is unknown, there exists an estimate $\hat{\mu}_k = \hat{\mu}_k(A_1, \ldots, A_T)$ such that the distribution of $\mu/\hat{\mu}_k \sim \operatorname{Gamma}(k, (k-1)c)$ for user-specified k and c, and $\mathbb{E}[T] \in [k/\mu, k/\mu + 1]$.

Conclusion

- ► Given X₁, X₂,... iid either Bernoulli or Poisson with mean a, there is an estimator â such that the distribution of the relative error â/a - 1 is known completely.
- This assists in integration using acceptance/rejection or TPA.
- This also gives exact confidence intervals for the estimate, as well as establishing fast (ε, δ)-randomized approximation schemes for many problems.
- ► By choosing appropriate c, can make the estimate either unbiased, or converge faster than CLT. [This is for Poisson, for Bernoulli, lose a factor of (1 - p).]