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Main results



Main results
Theorem (H. 2013)
Given B1, B2, . . . iid Bern(p) where p is unknown, there exists an

estimate p̂k = p̂k(B1, . . . , BT ) such that the distribution of

p/p̂k ∼ Gamma(k, (k − 1)c) for user-speci�ed k and c, and
E[T ] = k/p.

Theorem (H. 2016)
Given A1, A2, . . . iid Pois(µ) where µ is unknown, there exists an

estimate µ̂k = µ̂k(A1, . . . , AT ) such that the distribution of

µ/µ̂k ∼ Gamma(k, (k − 1)c) for user-speci�ed k and c, and
E[T ] ∈ [k/µ, k/µ+ 1].



Main results, part II

Theorem (Feng, H., Ruan 2016)
For both of the previous theorems, setting c = 1 gives an unbiased

estimator. Setting

c =
2ε

(1− ε2)[ln(1 + ε)− ln(1− ε)]

makes

P(|relative error| > ε) ≤ c1 · ck2
where c2 is as small as possible.



Relative error

â

a
− 1



By the numbers

Say
p = 20%

Suppose want
|relative error| ≤ 10%

Then need
18% ≤ p̂ ≤ 22%



New algorithms know relative error distribution

User set k = 5, c = 1 P(|rel err| > 0.1) ≈ 92.6%

-1 10.1-0.1



New algorithms know relative error distribution

User set k = 20, c = 1 P(|rel err| > 0.1) ≈ 66.1%

-1 10.1-0.1



New algorithms know relative error distribution

User set k = 661, c = 1.006 P(|rel err| > 0.1) ≈ 1%

-1 10.1-0.1



Running time
Lemma
Given k, and X1, X2, . . . iid Bern(p), the expected number of draws

used by the algorithm is
k

E[Xi]
.

Lemma
Given k, and X1, X2, . . . iid Pois(µ), the expected number of draws

used by the algorithm is in[
k

E[Xi]
,

k

E[Xi]
+ 1

]
.



A-O-k
Suppose want relative error of 10%

I GBAS (for Bernoulli) and GPAS (for Poisson) user decides k

I Example: if k = 661, then

P(relative error > 0.1) < 0.01

I If CLT holds perfectly: data X1, X2, . . . iid N(µ, µ) then

k = 664



Randomized approximation schemes

Definition
An estimate â for a is an (ε, δ)-randomized approximation scheme if

P
(∣∣∣∣ âa − 1

∣∣∣∣ > ε

)
≤ δ.



Application

Acceptance/rejection integration



Acceptance/rejection integration used for
Fast approximation of the permanent for very dense problems

M. Huber and J. Law.

Proc. of 19th ACM-SIAM Symp. on Discrete Algorithms, pp

681�689, 2008

Likelihood-based inference for Matérn type-III repulsive point

processes

M. L. Huber and R. L. Wolpert

Advances in Applied Probability, Vol 41, No 4, pp. 958�977, 2009

High-Con�dence estimator of small s-t reliabilities in directed

acyclic networks

R. Zenklusen and M. Laumanns

Networks, Vol 57, No 4, pp. 376�388, 2011



Acceptance/rejection integration

B

A

X ∼ Unif(B)

P(X ∈ A) = p = size(A)
size(B)

a = size(A) = size(B)p

â = size(B)p̂

Multiplication leads to relative error



Multiplication leads to relative error

For estimate

â = size(B)p̂

it holds that

relative error in â = relative error in p̂



How to get relative error small

For basic estimate:

p̂BE =
B1 + · · ·+Bn

n
,

I E[pBE ] = p, and SD(pBE) =
√
p(1− p)/n

I To make SD(pBE) = Θ(εp), need n = Θ(ε−2/p).

I But we don't know p!



DKLR

An optimal algorithm for Monte Carlo estimation

P. Dagum, R. Karp, M. Luby, and S. Ross

Siam. J. Comput., Vol 29, No 5, pp. 1484�1496, 2000

I Idea: Use {Bi} to form {Gi}, where G1, G2, . . . iid Geo(p)

I E[Gi] = 1/p, SD(Gi) = (1/p)
√

1− p
I Use

p̂ =

[
G1 + · · ·Gk

k

]−1
where k = Θ(ε−2) to get relative error below ε



Two problems with DKLR

I Biased estimate (in general E[1/X] 6= 1/E[X])

I Hard to get correct constant and lower order terms for k



Gamma Bernoulli Approximation Scheme (GBAS)

A Bernoulli mean estimate with known relative error distribution

M. Huber

Random Structures & Alg., arXiv:1309.5413, to appear.

I Use {Gi} to form A1, A2, . . . iid Exp(p).

I E[Ai] = 1/p, SD(Ai) = 1/p (lost factor of
√

1− p)

p̂k =
k − 1

A1 + · · ·+Ak



Nice properties of GBAS

Unbiased
E[p̂k] = p

Relative error

p/p̂k = p/[k − 1])A1 + · · · (p/[k − 1])Ak

since pAi ∼ Exp(p/(p/(k − 1)) ∼ Exp(k − 1),

p/p̂k ∼ Gamma(k, k − 1)



How to get exponentials, part 1

Start with a Poisson point process of rate 1

0 1 2 3

P1 P2 P3 P4 P5

T1 T2 T3 T4 T5 T6

Here T1, T2, . . . are iid Exp(1)



How to get exponentials, part 2

For each point of the process, �ip a Bern(p) coin

0 1 2 3

P1

0

P2

1

P3

1

P4

1

P5

0



How to get exponentials, part 3

Only keep those with Bernoulli draw 1

0 1 2 3

P ′
1 P ′

2 P ′
3

A1 A2 A3 A4

Result is a Poisson point process of rate p

So A1, A2, . . . iid Exp(p)



Geometric sum of exponentials is exponential

Fact
Let G ∼ Geo(p), and [R|G] ∼ Gamma(G, 1). Then R ∼ Exp(p).



How big should k be?

Bounding tails of gamma distributions for applications

J. Feng, M. Huber, S. Ruan, Y. Zhang

preprint, 2016

Short answer: at most k = 2ε−2 ln(1/δ) + 1.



Long answer
Theorem
For ε > 0, δ > 0, set

c =
2ε

(1− ε2) ln(1 + 2ε/(1− ε))
,

and

k = 2ε−2 ln(1/δ) + 1.

For G ∼ Gamma(k, k − 1),

P
(

1

cG
∈ [1− ε, 1 + ε]

)
> 1− δ 1 + ε√

π ln(1/δ)
.



Application

Mean of a bounded random variable



Converting mean of bounded r.v. to Bernoulli

Lemma
For

U ∼ Unif([0, 1]), X ∈ [0, c]

that are independent, then

E[X] = cP(cU ≤ X).



Application

TPA integration



Acceptance/rejection integration

BA

Often the size of A is
very small compared to
B, making AR slow



TPA

B0A

TPA shrinks the set every
time we sample. Output X
is number of times before
point falls into A. In ex-
ample, X = 2.

Nice fact:

X ∼ Pois

(
ln

(
size(B)

size(A)

))
B1

B2



Estimating Poisson means

The TPA paper with applications:

Random construction of interpolating sets for high dimensional

integration

M. Huber and S. Schott

J. of Applied Probability, arXiv:1112.3692. Vol 51, No 1, pp.

92�105, 2014.

To use TPA to get ratio size(B)/size(A), want estimate for mean
of iid Pois(µ) random variables with exact con�dence intervals.



How to turn Poissons into Exponentials

I Use A1, A2, . . . iid Pois(µ) for Poisson point process rate µ

I Use Ai ∼ Pois(µ) to determine how many points in [i− 1, i]

I Generate points uniformly in interval

0 1 2 3

P1 P2 P3

A1 = 1 A2 = 0 A3 = 2

I P1, P2 − P1, P3 − P2, . . . iid Exp(µ)



Running time

I After converting to exponentials, use same as with Bernoullis

I Each Poisson draw gives on average µ exponential draws

I Total Poisson draws for k exponentials is on average in

[k/µ, k/µ+ 1]



Pseudocode for GBAS

Gamma_Bernoulli_Approximation_Scheme
Input: k, c Output: p̂k

1) S ← 0, R← 0.
2) Repeat
3) X ← Bern(p), A← Exp(1)
4) S ← S +X, R← R+A
5) Until S = k
6) p̂k ← (k − 1)c/R



Pseudocode for GPAS

Gamma_Poisson_Approximation_Scheme
Input: k, c Output: µ̂k

1) A← 0, i← 0
2) While A < k [Draw k points.]
3) T ← Pois(µ)
4) If A+ T ≥ k [Then have k points.]
5) T ′ ← i+ Beta(k −A, T − (k −A) + 1)
6) A← A+ T , i← i+ 1
7) µ̂k ← (k − 1)c/T ′



Main results redux

Theorem
Given B1, B2, . . . iid Bern(p) where p is unknown, there exists an

estimate p̂k = p̂k(B1, . . . , BT ) such that the distribution of

p/p̂k ∼ Gamma(k, (k − 1)c) for user-speci�ed k and c, and
E[T ] = k/p.

Theorem
Given A1, A2, . . . iid Pois(µ) where µ is unknown, there exists an

estimate µ̂k = µ̂k(A1, . . . , AT ) such that the distribution of

µ/µ̂k ∼ Gamma(k, (k − 1)c) for user-speci�ed k and c, and
E[T ] ∈ [k/µ, k/µ+ 1].



Conclusion

I Given X1, X2, . . . iid either Bernoulli or Poisson with mean a,
there is an estimator â such that the distribution of the
relative error â/a− 1 is known completely.

I This assists in integration using acceptance/rejection or TPA.

I This also gives exact con�dence intervals for the estimate, as
well as establishing fast (ε, δ)-randomized approximation
schemes for many problems.

I By choosing appropriate c, can make the estimate either
unbiased, or converge faster than CLT. [This is for Poisson, for
Bernoulli, lose a factor of (1− p).]


