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Preface

Purpose This book covers a one semester course in stochastic operations research

for students who have had an undergraduate, Calculus based course in Probability.

Organization The course begins with an introduction before moving on to the

main topics.

• Queuing Networks.

• Simulation.

• Decisions.

• Models.

Why are all the numerical answers in problems and examples given to
4 significant digits? In my homework assignments to students I require that

all noninteger answers be presented to four significant digits. There are several

reasons why I do this.

The first is that it makes answers uniform. I do not have to worry if 1/(3+
√
2) =

(3−
√
2)/5 or not if the answer given is 0.2265. The second is that it emphasizes

to students that in most problems in applied mathematics the exact numbers are

uncertain. The number 1/3 is specific and exact, but not actually encountered

outside of toy problems. Third, it builds numerical literacy (aka numeracy.) Seeing

that exp(−2) ≈ 13.53% is a useful thing, as it makes it crystal clear that the

answers are not mere abstractions, but give results that can be acted upon.
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Chapter 1
What is Stochastic Operations Research?

Question of the DayWhat is stochastic operations research all about?

Mathematics has been used since ancient times to make choices that were the

best possible. Ancient Greeks such as Plato exhorted nobles to learn arithmetic (or

logistic as he called it) so that they would be able to properly supply their soldiers

during times of war.

World War II saw the apotheosis of this application, as massive numbers of

people and great quantities of military supplies had to be transported around the

globe. The British coined a new term, operations research (OR), to describe the

science and mathematics of making optimal decisions.

After the war, those scientists and mathematicians that had developed the be-

ginnings of OR took those ideas into industry, and revolutionized production and

systems development. OR was so important that it gained several synonyms. The

terms

• operational research,

• management science, and

• decision science

all refer to making decisions in an optimal fashion.

In most situations where a decision must be made, the parameters that inform

that decision are typically not known completely. For instance, if we are designing

a network of roads, we usually do not know of ahead of time how many people

will use the roads once the network is built.

But just because we do not know the exact numbers does not mean we know

nothing about the situation. Often we have partial information about the numbers

we need. We may know, for instance, that it is more likely that fewer than 1000

people per hour will use a road network than 1000 or more people will use it.

2 271
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The mathematics of partial information, how to model it and how to calculate

with it, is called probability. Synonyms for partial information include

• random,

• stochastic, and

• uncertain.

Definition 1
The mathematical science of making optimal decisions with partial information

is Stochastic Operations Research.

In this text, we will look at the major models and methods associated with

Stochastic OR. These include queuing networks, models of decision making, simu-

lation, and forecasting.

1.1 Probability

Suppose I am waiting for a bus. Let A denote the time needed for the bus to arrive

in minutes. Then either A > 5 is true, or A > 5 is false. After five minutes, I will

know for sure.

Notation 1
We will use T to stand for true, and F to stand for false.

Definition 2
A logical statement is a statement that is either true (T) or false (F).

Since computers operate in binary at their most basic levels, which only uses 0

and 1 for each binary digit (usually abbreviated as a bit). We can use 1 to stand for

true statements, and 0 to stand for false statements. This is encoded in the indicator
function, which we denote using a blackboard boldface numeral one.

Definition 3
The indicator function is I : {T, F} → {0, 1}, where

I(T) = 1

I(F) = 0.

A probability function (or probabilistic model) extends this notion of true or false

to allow for partial information. Probabilities measure how likely a statement is to
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be true given our current information. We will use P(p) to represent the probability
of a statement p being true by a number that lies in the interval [0, 1].

Definition 4
A probability function (aka probability measure) satisfies the following rules.

• True statements The probability of a true statement is 1. (P(T) = 1).

• Negation Let ¬p be the negation of p. So if p is T, ¬p is F, and if p is F,
¬p is T. Then

P(¬p) = 1− P(p).

• Countable mutually exclusive statements If the set {pi} is either a
finite set or an infinite sequence of statements such that at most one of

them is true at any time, we call the statements disjoint or mutually
exclusive. If the {pi} are a sequence of disjoint statements, then

P (one of the pi is true) =
∑
i

P(pi).

Often probability functions are defined in terms of sets instead of logical state-

ments. Both treatments can be made rigorous, however, the definition in terms of

logic is how probability is usually treated in practice, hence we will use the logical

approach from here on out.

We also use the name probability measure to refer to P because it measures how

likely a statement is to be true given our current information. For example, suppose

that I am waiting for a bus. I can let T denote the amount of time I have to wait

until the bus arrives.

Then to determine if T > 5 is true, all I have to do is wait five minutes. If the

bus arrives in 5 or fewer minutes, then the statement is true, and if it takes longer,

then the statement is false.

But before I wait the fiveminutes, I only have partial information aboutP(T > 5).
This partial information gives me a stochastic model of the bus. For instance, I
might know that in the past, the bus (on average) comes withing 5 minutes only

10% of the time. So I might initially say that P(T > 5) = 0.9 and P(T ≤ 5) = 0.1.

1.2 Discrete and continuous random variables

Given a random variable, we can assign a function that takes certain subsets of the

real numbers called measurable, and returns a number in [0, 1]. This function is

called the distribution of the random variable.
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Definition 5
For a random variableX , the distribution ofX is defined for measurableA ⊆ R
as

PX(A) = P(X ∈ A).

Reminder 1
The symbol ∈ means is an element of. So a is an element of the set containing a,
b, and c, so a ∈ {a, b, c}. The symbol⊆means is a subset of. So {a, b} ⊆ {a, b, c}.
The symbol R stands for the real numbers.

So how do we go about calculating P(X ∈ A) for a random variable? That

depends on the type of random variable. It turns out there are three types of

random variables. The two most common types are discrete and continuous.

Definition 6
A random variable is discrete if it has a probability density function (pdf)
fX such that for all measurable subsets A,

P(X ∈ A) =
∑
i∈A

fX(i).

This is sometimes called a probability mass function. Really, however, this term
is outdated, there is no mathematical reason to call the densities for discrete and

continuous random variables anything other than densities.

Definition 7
A random variable is continuous if it has a probability density function (pdf)
fX such that for all measurable subsets A,

P(X ∈ A) =

∫
a∈A

fX(a) da.

So for discrete random variables, we find P(X ∈ A) by summing the density over

elements of A. For continuous random variables, we find P(X ∈ A) by integrating

the density over elements of A.
If we wanted to be a bit more precise mathematically, we could say that discrete

random variables have a density with respect to counting measure, while continuous
random variables have a density with respect to Lebesgue measure. However, these
details will be unnecessary for what we want to do with random variables, and so

we will not discuss them further.
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1.3 Named distributions

Several distributions are important enough to have their own names. The first

distribution we will be using is the exponential distribution.

Definition 8
Say that X has the exponential distribution with parameter λ if λ > 0 and
X has density

fX(a) = λ exp(−λa)I(a ≥ 0).

Write X ∼ Exp(λ).

Note that we used the indicator function here for convenience. When a is at least
0, I(a ≥ 0) = 1 and fX(a) = λ exp(−λa). When a is less than 0, I(a ≥ 0) = 0, so
fX(a) = 0. Another way to say this is that for the density to be nonzero, we must

have a ≥ 0 be true.
Yet another way to write this is

λ exp(−λa)I(a ≥ 0) =

{
λ exp(−λa) a ≥ 0
0 a < 0.

Graphing this density yields

0

λ

We call λ the rate parameter, as when it is higher, the random variable is more

likely to be smaller.

Moreover, using indicator functions makes it easier to figure out how to find

probabilities (and later in the course, expected value). That is because the indi-

cator function in an integral (or a sum) tells us what the limits of integration (or

summation) should be.

6 271



Mark Huber Stochastic Operations Research

Example 1
Suppose A ∼ Exp(1.5). Find P(A > 1) and P(A ≤ 1).

Answer For P(A > 1):

P(A > 1) =

∫
a∈[1,∞)

1.5 exp(−1.5a)I(a ≥ 0) da

=

∫ ∞

1

1.5 exp(−1.5a) da

= − exp(−a)|∞1 = 0− (− exp(−1.5)) = 0.2231 . . . .

Note that the I(a ≥ 0) part of the integrand was redundant, since for a ∈ [5,∞),
this was always true. For P(A ≤ 1), we will use the indicator function in the

density to change our limits of integration.

P(A ≤ 1) =

∫
a∈(−∞,1]

1.5 exp(−1.5a)I(a ≥ 0) da

=

∫ 1

0

1.5 exp(−1.5a) da

= − exp(−a)|10 = −(− exp(−1.5))− (− exp(0)) = 1− exp(−1.5)
= 0.7768 . . . .

Problems
1.1 Suppose X ∼ Exp(0.1).

a) Find P(X > 10).

b) Find P(X ≤ 10).

1.2 Suppose Y ∼ Exp(1.3), andW ∼ Exp(2).

a) Find P(Y ∈ [0, 1]).

b) Find P(W ∈ [0, 1]).

c) Find P(Y ∈ [−1, 1]).
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Chapter 2
Conditional Probability

Question of the Day Suppose X ∼ Exp(2). What is P(X > 2|X > 1)?

In this chapter we explore further the notions of distribution, and introduce

condition probability together with averages.

2.1 Cumulative distribution function

Recall that the distribution of a random variable X is PX(A) = P(X ∈ A) for all
measurable sets A.

Definition 9
Say that X and Y have the same distribution (write X ∼ Y ) if PX = PY .

Because there are so many measurable sets A, it can be very difficult to ascertain

if PX and PY are the same. The Carathéodory extension theorem helps this process

immensely, by stating that we only need check sets of the form (−∞, a]. Note
that PX((−∞, a]) = P(X ≤ a). This is a function of a which we give the name

cumulative distribution function, or cdf for short.

Definition 10
The cumulative distribution function ofX (cdf for short) written cdfX(a) =
FX(a) has domain R, codomain [0, 1], and is defined as

cdfX(a) = P(X ≤ a)

Theorem 1 (Carathéodory extension theorem)

If for all a, cdfX(a) = cdfY (a), then X ∼ Y .

Some cdfs are easy to calculate.
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Fact 1
If X ∼ Exp(λ), then cdfX(a) = 1− exp(−λa).

Complementary to the cdf is the survival function.

Definition 11
The survival function of a random variable X is SX(a) = 1 − cdfX(a) =
P(X > a).

Fact 2
If X ∼ Exp(λ), then SX(t) = exp(−λt).

From the cdf, it is easy to find the pdf.

Fact 3
If X is a continuous random variable, then pdfX = [cdfX ]

′
.

If X is a discrete random variable, then

pdfX(i) = lim
δ→0

cdfX(i)− cdfX(i− |δ|).

2.2 Partial information

What separates probability from other branches of mathematics is the notion of

conditioning, or partial information. That is, the probability of events occurring can

change as we learn information. Let’s start with an example.

Notation 2
For a finite set S, #(S) is the number of elements of S.

For instance, #({a, b, c}) = 3, since there are three elements in S.

Definition 12
For a finite set S, say that X ∼ Unif(S) if for all s ∈ S, P(X = s) = 1/#(S).

Definition 13
The conditional probability of A given B, written P(A|B) is the probability
that A is true given that B is true.
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Example 2
Suppose that X is the outcome of a roll of a six sided die. So X ∼
Unif({1, 2, 3, 4, 5, 6}). So P(X = 1) = 1/6. Now suppose we are given in-

formation that X ≤ 4. At this point we know that either X = 1, X = 2, X = 3,
or X = 4. Each is equally likely, so P(X = 1|X ≤ 4) = 1/4.

Definition 14
Let A and B be events where B has positive probability. Then

P(A|B) =
P(AB)

P(B)
.

With this we can solve the question of the day.

Example 3 (Question of the day)

For X ∼ Exp(2), find P(X > 2|X > 1).

Answer By the conditional probability formula, we can find this as

P(X > 2|X > 1) =
P(X > 2, X > 1)

P(X > 1)
=

P(X > 2)

P(X > 1)

=
exp(−(2)(2))
exp(−(2)(1))

=
exp(−4)
exp(−2) = exp(−2) = 0.1353. . . .

More generally, we have conditional distributions.

Definition 15
Let X be a random variable, and A a set where P(X ∈ A) > 0. Then

the conditional distribution of X given X ∈ A is [X|X ∈ A], where
P[X|X∈A](B) = P(X ∈ B|X ∈ A) = P(X ∈ AB)/P(X ∈ A).

For uniform distributions, we have the following fact.

Fact 4
Suppose X is a random variable uniform over the finite set S. Let R be any

subset of S. Then
[X|X ∈ R] ∼ Unif(R).
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Proof. Let r ∈ R. Then

P(X = r|X ∈ R) =
P(X = r,X ∈ R)

P(X ∈ R)
=

P(X = r)

P(X ∈ R)
=

1/#(S)

#(R)/#(S)
=

1

#(R)

which is the desired result.

Exponentials have a unique property among continuous random variables.

Fact 5
For X ∼ Exp(λ) and s ≥ 0,

[X − s|X > s] ∼ X.

This is called the memoryless property.

In other words, if T is an exponential random variable and it is known that T > 3.4,
then it is like T starts over at 3.4. The time yet to wait, T − 3.4 has the same

distribution as T itself! That is why exponential random variables are referred to

as memoryless, as they are continually forgetting how much time has passed.

Proof. Let s > 0, a ≥ 0. Then

P(X − s > a|X > s) =
P(X − s > a,X > s)

P(X > s)

=
exp(−λ(s+ a)

exp(−λs)
= exp(−λa).

2.3 Independence

Two events are independent if knowing if one is true or false does not change the

probabilities of the other event.

Definition 16
Two events A and B are independent if either P(B) = 0 or P(A|B) = P(A).

Another characterization is useful when dealing with independence.

Fact 6
Events A and B are independent if and only if P(A,B) = P(A)P(B).

11 271



Mark Huber Stochastic Operations Research

In order to create a model of how a time evolving process changes, we often use

a stream of iid random variables. A stream is similar to a sequence: it means that

the first element of the stream exists, and given that the first n elements of the

stream exists, the n+ 1 element of the stream exists.

Definition 17
A set of random variables is a stream if

• Begin with step 0 and the stream empty.

• At step i, given the i elements of the stream, we can generate a new random

variable from the stream.

For example, we can flip a fair coin once to start our stream. Given a finite

number of flips, we can always flip our coin one more time to generate a new

random flip from the stream.

Definition 18
A stream {Xi} of random variables is independent, identically distributed
(iid for short) if for all n,

[Xn|X1, . . . , Xn−1] ∼ X1.

SoXn must be independent of (X1, . . . , Xn) and must have the same distribution

as X1 for all n. Note that given the assumption of the induction axiom and the

integer axioms, any stream of random variables yields a corresponding sequence,

and so this term is often used instead. Here we use stream to emphasize that for

operations research applications we do not assume that all these random variables

exist simultaneously, instead, they are generated from data or simulation only as

needed, and after a finite number of steps is a finite set of random variables.

Problems
2.1 Suppose A occurs with probability 0.3, B occurs with probability 0.7, and

both occur with probability 0.2.

a) Find P(A|B).

b) Find P(B|A).

2.2 Suppose A occurs with probability 0.4, B with probability 0.6, C with

probability 0.7, AB with probability 0.1, AC with probability 0.4, and
ABC with probability 0.1.
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a) What is P(C|A)?
b) What is P(C|A,B)?

2.3 Suppose D ∼ Unif({1, . . . , 100}).

a) Find P(D = 1|D ≤ 60).

b) Find P(D ≤ 60|D = 1).

2.4 Suppose Y ∼ Unif({1, . . . , 50}). What is P(Y ≤ 30|Y is even)?

2.5 Let X ∼ Exp(0.2).

a) What is the distribution of [X − 3|X > 3]?

b) What is P(X > 5|X > 3)?

2.6 Let Y ∼ Exp(3.2).

a) What is the distribution of Y − 1 given that Y > 1?

b) What is P(Y > 2|Y > 1)?

2.7 Let (B1, B2, B3) be the first three draws from a stream of iid random vari-

ables where P(Bi = 1) = 0.3, P(Bi = 0) = 0.7 (we write Bi ∼ Bern(0.3)
for this Bernoulli distribution.)

a) What is P(B1 = 1, B2 = 1)?

b) Find P(B1 +B2 +B3 = 1).

2.8 LetX1, X2, X3 be the first three draws from a stream of iid random variables

where prob(Xi = j) = 1/4 for j ∈ {1, 2, 3, 4}. Find P(X1+X2+X3 = 11).
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Chapter 3
Queues

Question of the Day Customers arrive at a help desk according to a uniform

distribution over [0, 10]. On average, what is the time between customer

arrivals?

Summary

• Queues are composed of customers that are waiting for service.

• Queue discipline is how the next customer is selected for service.

• Basic queue notation tells us something about the interarrival distribution,

the service distribution, and the number of servers.

Queues are a rich model in operations research. Many operations can be reduced

to one or more queues working in unison.

At the simplest level, a queue consists of customers that are waiting for service.

The term customermight refer to physical people waiting in line for service at a food

truck, or to packets of information traveling through the Internet, injuries at a crash

awaiting medical care, theme park goers waiting to ride a roller coaster, inventory

awaiting shipment, or computer searches awaiting resolution by a supercomputing

cluster.

The notion of a queue is very general, which is why it is such a widely used model.

Operations research deals with making decisions when resources are limited, and

queues are an inevitable part of life with limited resources. The more servers that

can be deployed, the faster customers will be served, but the more expensive it will

be to maintain and run the queue.

Basic queuing models can be analyzed mathematically, while more complicated

ones have behavior that is studied through simulation. We will start with the

queues that we can analyze, and later on show how simulations can be used.
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3.1 Queueing terms

Deciding which customer to serve next might literally be a matter of life and death

if we are talking about an emergency room queue. In a more prosaic example, a

supercomputer might decide to give priority to certain types of jobs that are more

important. The way that a queue decides the next customer to serve is called the

queue discipline.

Definition 19
The queue discipline describes how the customers in the queue are taken in for

service. Three common methods of choosing which customer to service next are:

• FIFO (aka FCFS). This stands for first in, first out (or first come, first served)

and means that the next customer to be served is the one that has been

waiting in line the longest.

• LIFO. This stands for last in, first out. Here incoming customers are placed

on a stack as they arrive, and the servers picks from the top of the stack

and works down to the bottom.

• Priority. Here each incoming customer is assigned a priority, and the

highest priority customers are served first. This is typically the case in an

Emergency Room, where patients needing immediate care are served first.

There are many variations on queue discipline that do not have their own names,

and often real queues are a mix of FIFO and priority disciplines.

Definition 20
A customer refers to a entity that is awaiting a service. An entity performing a

service is called a server.

An important factor in customer satisfaction is how many customers are waiting

in the line at any one time.

Definition 21
The number of customers waiting for service at a particular time is called the

queue length.

It is easier to model queues when the number of customers that can wait

is unbounded, but in the real world, there is a limit on the size of the

queue.
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Definition 22
The capacity of the queue is the maximum number of customers that can be

waiting for service at any one time.

Definition 23
The channels of the queue refers to the number of servers that are available for

servicing the customers.

Definition 24
The time needed for a server to service one customer is called a service time.

Service times are typically modeled using a distribution. Each service is then

taken to be an independent draw from that distribution. The queue will run faster

if service times are small and the number of channels is high.

Definition 25
The time from the arrival of one customer until the arrival of the next customer

in the queue is called the interarrival time.

A short interarrival time results in many customers arriving, and the length of

the queue growing. The actual time the ith customer arrives to join the queue is

called the arrival time.

Definition 26
The arrival time for the ith customer is the time that customer joins the queue.

Note that we can calculate the arrival times from the interarrival times.

Fact 7
If A1, . . . , An are the first n interarrival times, then

Tn = A1 + · · ·+ An.

t
0 1.3

T1

6.7

T2

9.1

T3

A1 A2 A3

In the picture, A1 = 1.3, A2 = 5.4, and A3 = 2.4. So that means T1 = A1 = 1.3,
T2 = A1 + A2 = 6.7, and T3 = A1 + A2 + A3 = 9.1.
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3.2 Notation

In order to describe the queue, we use queue notation. The simplest form has

three slots, for the arrival distribution, the service distribution, and the number of

servers.

Notation 3
Queue notation has the form

∗/ ∗ /∗,
where the first entry indicates information about the arrival distribution, the

second entry indicates information about the service distribution, and the third

entry indicates the number of servers in the queue.

The information about distributions is eitherG for a general distribution,D for

a constant time (D for deterministic), M for the exponential distribution (M for

memoryless or Markov) and Ek for an Erlang distribution with shape parameter

k.

Example 4
The queue notation

M/D/2,

means that interarrival times follow an exponential distribution, service takes a

constant amount of time, and there are 2 servers working independently to clear

customers from the queue.

The queue notation

G/G/1

means that their in one server, but the distribution of the arrival times and service

times could be anything.

3.3 Expected value

The expected value of a random variable is a measure of central tendency. Not all

random variables have an expected value, but when they do, the sample average of

an iid stream of draws from the random variable will converge to this number.

18 271



Mark Huber Stochastic Operations Research

Reminder 2
The expected value (aka expectation aka average aka mean) of g(X) is

E[g(X)] =

∫
R
g(s)fX(s) ds.

if X is a continuous random variable, and

E[g(X)] =
∑
R

g(s)fX(s)

if X is a discrete random variable.

Definition 27
If the expected value of X is a finite, real number, we say that X is integrable.

Example 5 (Question of the day)

If X is uniform over [0, 10] minutes, then what is E[X]?

Answer Write X ∼ Unif([0, 10]) to indicate that X is uniform over [0, 10].
Then recall that the density of a uniform over an interval is the indicator of that

interval divided by the length of the interval. That is,

fX(s) =
1

10− 0
I(s ∈ [0, 10].

Hence the expected value: E[X] = E[g(X)] where g(s) = s is:

E[X] =

∫
R
s
1

10
I(s ∈ [0, 10]) ds =

∫ 10

0

s

10
ds =

s2

2 · 10

∣∣∣∣10
0

= 5.

So the answer is 5 minutes .

Of course, is it faster to recall the expected value formula for a uniform over an

interval. It is just the midpoint of the interval.

Fact 8
For X ∼ Unif([a, b]),

E[X] =
a+ b

2
.
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Once we know the average time between arrivals, the arrival rate is just the
inverse of that number.

Definition 28
The arrival rate for a queue is 1 over the average interarrival time.

A similar definition holds for services.

Definition 29
The service rate for a queue is 1 over the average service time.

Problems
3.1 Suppose three customers, a, b, and c arrive to a queue in that order.

a) Under a FIFO queue discipline, in what order are the customers served?

b) Under a LIFO queue discipline, in what order are the customers served?

3.2 A queue serves Gold status customers before Silver, which are served before

Pearl. Otherwise the customers are served FIFO. Suppose we have a single

server, and customer a (who is Pearl status) arrives first. While a is being

served, b (who is also Pearl status) arrives next, followed by c (who is Gold

status). Assuming all three of these customers are served before another

customer arrives, what order are they served in?

3.3 If the first three interarrival times areA1 = 0.4,A2 = 1.34, andA3 = 0.013,
what are the first three arrival times?

3.4 Suppose the first three interarrival times are all 1.5, but then the fourth

interarrival time is 2.6. What are the first four arrival times?

3.5 For interarrival times that are uniform over [0, 2] hours, what is the arrival
rate?

3.6 For service times that are uniform over [3, 5] seconds, what is the service
rate?
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Chapter 4
Expection and queues

Question of the Day Suppose interarrival times are uniform over [0, 10]
minutes. Lower bound the average number of arrivals in the first hour.

Summary For a queue with arrival rate λ,

1. Wald’s Equation allows us to find the expected value of the sum of a

random number of iid random variables (sometimes).

2. A lower bound on the average number of arrivals in a G/G/s queue in
time interval [0, t] is

tλ− 1.

3. An upper bound on the average number of arrivals in a G/G/s queue
where the arrival times are at mostm is

λ(t+m).

A very important fact about expectation is that it is a linear operator. That means

(roughly speaking) that it distributes over addition and multiplication.

Fact 9
For any two integrable random variables X and Y and real numbers a and b,

E[aX + bY ] = aE[X] + bE[Y ].

We can extend that result to a sum of an arbitrary finite set of random variables.
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Fact 10
For any integrable random variables X1, . . . , Xn and a1, . . . , an ∈ R,

E

[
n∑

i=1

aiXi

]
=

n∑
i=1

aiE[Xi].

Since arrival times in a queue are just the sum of the interarrival times, this

immediately gives the following.

Fact 11
For a G/G/s queue with integrable interarrival times {Ai}, if Ti is the arrival

time of the ith customer,

E[Ti] = iE[A1].

Proof. If A1, . . . , An are the first n interarrival times, then

E[Tn] = E

[
n∑

i=1

Ai

]
= E[A1] + · · ·+ E[Ai]

= iE[A1].

4.1 Stopping Times

Now suppose that we have a stream of arrival times T1, T2, T3, . . .. For any given

time t, there will be some of these times that are at most t, and some of these times

that are at least t.
For instance, if (T1, T2, T3, T4) = (1.1, 2.0, 3.6, 4.7), then the set

{i : Ti ≤ 4} = {1, 2, 3},

since the first three times are in t and the fourth time is greater than t. Similarly,

{i : Ti > 4} = {4, 5, 6, . . .},

since the Ti are an increasing sequence.

The smallest number in a nonempty set {4, 5, 6, . . .} is called the minimum of

the set. If the set is empty, then there is no minimum.

So we define something called the infimum of the set. When the set has a

minimum, the infimum is just the minimum. (Note that infimum has the same root
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as inferior, meaning less than. So the infimum is the value of the set that is less

than all the others.) If the set is empty, then we call the infimum∞.

In our example

inf{4, 5, 6, . . .} = 4.

We say that a number is a lower bound for a set of real numbers if it is less than

or equal to all the elements of the set.

Definition 30
A number a is a lower bound for A ⊆ R if

(∀b ∈ A)(a ≤ b).

Reminder 3
The symbol ∀ means for all, and means that what follows is true because for

any choice of x > 4, it holds that x+ 1 > 5.
On the other hand, the statement (∀x > 4)(x > 6) is false, because there is a

choice of x > 4 (such as x = 4.3) which makes x > 6 false.

Formally, the infimum is defined as follows.

Definition 31
Given a subset of real numbers A, the infimum is

• inf(A) =∞ if A = ∅.

• If A has at least one lower bound, then inf(A) is the maximum of the set

of lower bounds of A.

• inf(A) = −∞ if no lower bound exists.

That is, the infimum of a set is the largest number that is smaller than every

other number in the set. In our example, 4 is less than or equal to every number in

{4, 5, 6, . . .}, and if I try to use a larger number like 4.1, it is not less than or equal

to 4, so cannot be the infimum.
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Example 6
Some examples of the infimum operator in action:

• inf(∅) =∞.

• inf({4, 5, 6, . . .}) = 4. Some lower bounds for this set include

−6, 3, 3.5, 3.9999, 4, but the largest lower bound is 4, as anything bigger
than 4 is not a lower bound.

• inf({. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}) = −∞ since there is no lower bound,

that is, there is no number that is less than or equal to every number in

the set.

Now suppose that the stream of arrival times starts out as:

T1 = 1.2, T2 = 3.6, T3 = 6.1, T4 = 6.5, . . .

Then consider A = {n : Tn > 4}. This set will be A = {3, 4, 5, . . .} because
T3, T4, . . . are all greater than 4, but T1 and T2 are not. Note that inf({3, 4, 5, . . .} =
3, since that is the minimum value of the set.

In general, we have that

M = inf{n : Tn > 4},
is the number of the customer who is the first to arrive after time 4.
That makes TM the first arrival time that is past time 4. In the example we just

gave,M = 3, and TM = T3 = 6.1.
Because the arrival times T1, T2, . . . are random, the value of M will also be

random. We callM a stopping time.

Definition 32
Given a stream of random variablesX1, X2, . . ., a stopping time N is a random

variable where the statement N ≤ n can be determined using only the first n
values X1, . . . , Xn of the stream.

Example 7
For arrival times Ti and nonnegative real number t, let

M = inf{n : Tn > t}.

show thatM is a stopping time.

Answer Let n ∈ {1, 2, . . .}. Then M ≤ n if and only if Tn > t. This can be

determined to be true or false using only T1, . . . , Tn, so M is a stopping time!
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4.2 Wald’s Equation

We know that for a stream of integrable iid random variables X1, X2, . . .,

E

[
n∑

i=1

Xi

]
= nE[Xi].

How does that work with the sum of the Xi from 1 up to a stopping time N?

Wald’s equation tells us that it behaves much like the deterministic sum, as long as

the random variables are somewhat nice.

Theorem 2 (Wald’s Equation)

LetX1, X2, . . . be an iid stream of integrable random variables, andN a stopping

time for the stream. Then if either

• P(X ≥ 0) = 1 (so we are working with nonnegative random variables) or

• N is integrable, then

E

[
N∑

n=1

Xn

]
= E[N ]E[X1].

Remember that the arrival times can be found as the sum of the interarrival

times. So

Tn = A1 + · · ·+ An.

That means

M = inf{n : A1 + · · ·+ An > t},
and

E

[
M∑
i=1

An

]
= E[M ]E[A1].

By definition,

∑M
i=1An > t, so

t < E[M ]E[A1],

and E[M − 1] > (t/E[A1])− 1. If we call the service rate λ, we have established
the following:

Fact 12
For a G/G/s queue, the expected number of customers that arrive in [0, t] is at
least

tλ− 1.
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Example 8
Suppose interarrival times are uniform over [0, 10] minutes. Lower bound the

average number of arrivals in the first hour.

Answer An hour is [0, 60] minutes. The service rate is one over the expected

interarrival time, so 1/5 per minute. Hence the expected number of customers is

at least

1

5 minutes

· 60 minutes− 1 = 11 .

Note that if you tackle these problems correctly, the units of time should cancel,

since the final result will be a unitless number.

In this case, because we can upper bound a uniform over [0, 10] by 10, we can
also actually upper bound the expected number of customers in the first hour.

Example 9
Suppose interarrival times are uniform over [0, 10] minutes. Upper bound the

average number of arrivals in the first hour.

Answer Let M be inf{n : A1 + · · · + An > 60 minutes}. Then∑M
i=1Ai ∈

[60, 70]. So by Wald’s Equation E[M ]E[A1] ≤ 70, and since E[A1] is 5 minutes,

E[M ] ≤ 70 minutes

5 minutes

≤ 14.

We can generalize this to the following fact.

Fact 13
For a G/G/s queue with arrival rate λ, if the arrival times are at mostm with

probability 1, then the average number of arrivals in [0, t] is at most

λ(t+m).

Problems
4.1 Suppose E[X] = 4.2 and E[Y ] = 5.6. What is E[2X − 4Y ]?

4.2 Suppose that X1, X2, . . . are identically distributed random variables with

mean 2.1.

a) Find E[X1 +X2 +X3].
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b) Find E
[∑12

i=1Xi

]
.

4.3 Find the infimum of the following sets.

a) S1 = {1, 2, 3}.
b) S2 = {1, 2, 3, . . .}.
c) S3 = {x : x > 0, x < 5} =]0, 5[.

4.4 Find the infimum of the following sets.

a) A1 = {x : x ≥ 3, x ≤ 7} = [3, 7].

b) A2 = {x : x ≥ 7, x ≤ 3}.
c) A3 = {2, 4, 6, . . .}.
d) A4 = {. . . ,−4,−2, 0}.

4.5 Say that interarrival times for aG/G/2 queue have density 20x3(1−x)I(x ∈
[0, 1]) when measured in minutes. Lower bound the expected number of

customers to arrive in the first ten minutes.

4.6 Suppose that the interarrival times for a G/G/3 queue are Unif([10, 20])
seconds. Lower bound the exxpected number of customers to arrive in the

first minute.

4.7 Suppose interarrival times for aG/G/2 queue are 1minute with probability

0.3, 2 minutes with probability 0.6, and 3 minutes with probability 0.1.

a) Lower bound the expected number of customers to arrive in the first

hour.

b) Lower bound the expected number of customers to arrive in the first

two hours.
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Chapter 5
Memoryless queues

ForG/G/s queues, we could find E[Tn], the average time of the arrival of customer

n, and we could lower bound the average number of customers that arrive in [0, t].
For an M/G/s queue, we can do much more. We can actually determine the

distribution of the arrival of customer n, and also the distribution of the number of

customers that arrive in [0, t]. If we have an M/M/s queue, we can calculate even

more, such as the long term number of people in the queue.

5.1 Number of customer arrivals for the M/G/s queue
Suppose that the time between arrivals are exponential random variables with rate

parameter λ. Then we give a name to the set of arrival times. We call it a Poisson
point process, or PPP for short.

It turns out that if we take a PPP and look at the number of points that fall in [0, t]
(so the number of customers that arrive in [0, t]) this will be a Poisson distributed

random variable. (This is why it is called a Poisson point process.)

Definition 33
Say thatX has a Poisson distributionwith parameter µ if for i ∈ {0, 1, 2, . . .},

P(X = i) =
µi

i!
exp(−µ).

Write X ∼ Pois(µ).

Poisson random variables are unitless numbers, and soX andX2
have the same

units. (Compare to something like X a measure of X , where X might have units

of meters, which means X2
has units of meters squared.) I am bringing this up

here because of the following fact.
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Fact 14
For X ∼ Pois(µ), E[X] = µ and V[X] = µ.

Normally the mean of a random variable has the same units as the random

variable, and the variance has units that are the square of the random variable.

Poisson (being unitless) is one of the few random variables over the nonnegative

integers with mean equal to the variance.

A PPP on [0,∞) has two great properties. The first is that the average number

of points in [0, t] is exactly λt. (Recall the earlier we could only lower bound it

by λt− 1.) The second is that if I consider two time intervals [a, b] and [c, d] that
do not overlap (so b < c), then the number of arrivals in the two intervals are

independent of each other.

Even more amazing is that these two properties define what it means to be a

Poisson point process of rate λ over [0,∞).

Definition 34
A Poisson point process of rate λ on [0,∞) is P ⊆ R such that

• For all t, E[#(P ∩ [0, t])] = λt.

• For all a < b < c < d, #(P ∩ [a, b]) and #(P ∩ [c, d]) are independent
random variables.

In words, we have a Poisson point process if the points represent customer

arrival times, the average number of customers that arrive in an interval has mean

equal to the arrival rate times the length of the time interval, and for two intervals

that do not overlap, the number of customer arrivals in one interval is independent

of the number of customer arrivals in the other interval.

Fact 15
For a Poisson point process of rate λ on [0,∞),

#(P ∩ [0, t]) ∼ Pois(λt).
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Example 10
Let P be a Poisson process on [0,∞) of rate 4. Then what is the chance that

exactly 10 points fall in [0, 2]?

Answer The number of points that fall into [0, 2] will be

#(P ∩ [0, 2]) ∼ Pois(2 · 4),

so the chance that this equals 10 is

810

10!
exp(−8) ≈ 0.09926 . . . .

Our big fact is that if you have a set of times with exponential interarrivals, then

the result is a Poisson point process of rate λ.

Fact 16
Let A1, A2, . . . be an iid stream of Exp(λ) random variables. Then

P = {A1, A1 + A2, A1 + A2 + A3, . . .}

forms a Poisson point process of rate λ over [0,∞).

So for our M/G/s queue, the times of the customer arrivals will be a Poisson

point process.

5.2 Arrival times for the M/G/s queue
Recall that the arrival time of customer n is the sum of the first n interarrival times.

Reminder 4
If A1, . . . , Ak are iid Exp(λ), then the distribution of their sum is called gamma
or Erlang with parameters k and λ.

Fact 17
The density of X ∼ Erlang(k, λ) is

fX(s) =
λksk−1

(k − 1)!
exp(−λs)I(s ≥ 0).

This allows us to calculate exactly the probability that a particular arrival time

falls into a particular set.
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Example 11
Suppose I have an M/M/s queue with arrival rate 4 per minute. What is the

chance that the fourth customer arrival comes in [1, 1.1] minutes?

Answer Using the gamma distribution, this will be:

P(T4 ∈ [1, 1.1]) =

∫ 1.1

1

44

3!
s3 exp(−4s) ds

=
44

3!

−(3 + 12s+ 24s2 + 32s3)

128
exp(−4s)|1.11 = 0.07402 . . . .

5.3 Intuition behind the Poisson and Erlang distributions

For a Poisson point process of rate λ, the average number of points that fall into

an interval of length t is λt. When t is very small, it is likely that the number of

points will either be 0 or 1.

If we think about a differential interval of length dt, the probability that it

contains a point will be λ dt.
What is the chance, then that all the other differential points will be empty?

There are t/dt such intervals, each with a 1− λ dt of being empty.

(1− λ dt)t/dt = exp(−(λdt)(t/dt)) = exp(−λt).

Hence if we want 3 points in interval [0, t], we must integrate over all the

differential intervals where the points might be. However, this over counts things.

A point set (x1, x2, x3) will only be valid if x1 < x2 < x3. If x2 < x1 < x3 then

these cannot be arrival times. Hence we divide by the total number of orderings.

That is,

P(#(P ∩ [0, t]) = 3) =

∫
(x1,x2,x3)∈[0,t]3

1

3!
(λ dt1)(λ dt2)(λdt3) exp(−λt)

=

∫
x1∈[0,t]

∫
x2∈[0,t]

∫
x3∈[0,t]

λ3

3!
dt3 dt2 dt1 exp(−λt)

=
t3

3!
exp(−λt).

We did this for three points, but this argument can be extended easily to an

arbitrary number of points.

This is not a formal proof, but hopefully gives some intuition why the formula

for the Poisson distribution is the way it is.

A similar analysis gives use the density of an Erlang. For the third customer

arrival to fall in [t, t + dt], there must be a point in [t, t + dt] (this happens with

31 271



Mark Huber Stochastic Operations Research

probability λ dt), there must be two points in [0, t] (this happens with probability

(λt)2/2! exp(−λt).
We can also write P(X ∈ [t, t + dt]) as P(X ∈ dt) where here dt refers to the

interval of length dt around t. In terms of density,

P(X ∈ dt) = fX(t) dt.

Hence

P(X ∈ [t, t+ dt]) = fX(t) dt =
(λt)2

2!
exp(−λt)(λ dt).

Problems
5.1 If P is a Poisson process of rate 2.5 per second over [0,∞), what is the

chance that there are at most 3 points of P in the first 2 seconds?

5.2 Let Q be a Poisson point process of rate 5.2 per hour over [0,∞).

a) What is the average number of points of Q in [0, 8]?

b) What is the chance that the number of points equals ⌊E[Q]⌋?

5.3 If the interarrival times between customers are modeled as iid Exp(8.4/s),
how many seconds (on average) are there between customer arrivals?

5.4 For service times that are modeled as iid Exp(2/hr), what is the service
rate?

5.5 For an M/G/2 queue of arrival rate λ, what is the distribution of the time

of the third customer arrival?

5.6 For anM/D/1 queue with arrival rate 1 per minutes, what is the chance

the third arrival comes between time 3 minutes and 4 minutes?
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Queue capacity

Question of the Day Suppose a single server averages 4.3 minutes to complete

a job. How many servers are needed if the arrival rate is 13.4 per minute to

keep the queue from exploding?

The worst thing that can happen for a queue is for the arrival rate to be faster than

the service rate. It is at point that the queue starts backing up and the customers

waiting for service grows ever longer.

To see why, we need to talk a bit about renewal theory.

Definition 35
If A1, A2, . . . are an iid stream of positive random variables, and Tn = A1 + · · ·+
An, then {Tn} is a renewal process. We call the times {Tn} renewal times (or
more simply renewals.)

Example 12
The arrivals time of a G/G/s queue form a renewal process.

The name comes from the fact that since the Ai are independent, if we know

Tn, then it is like the process starts over (renews) from there. The set of values

Tn+1 − Tn, Tn+2 − Tn, . . . has the same distribution as T1, T2, . . .. For any time t,
let Xt = #{n : Tn ≤ t} count the number of renewals in the interval [0, t].
An important fact about renewal processes is the Elementary Renewal Theorem.

It is similar to the Strong Law of Large Numbers, and shows how the expected

number of renewals in a finite time interval behaves.
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Theorem 3 (Elementary Renewal Theorem)

For a renewal process T1, T2, . . ., and Xt = #{n : Tn ≤ t},

lim
t→∞

E[Xt]

t
=

1

E[Ti − Ti−1]
.

For a G/G/s queue with arrival rate λ, this says that the expected number of

customer arrivals in [0, t] divided by t converges to λ as t goes to infinity.

Note that both the interarrival and service times can be used to form a renewal

process. Now consider the times when a customer completes service. Each of those

times is preceded by a random draw from the service time distribution. But there

could be times when the line of customers waiting for service is empty, so the

number of services is at most the number of service time draws that fit into [0, t].
That is, if St is the number of services completed by time t,

lim
t→∞

E[St]

t
≥ µ,

where µ is the service rate.

So what happens if the service rate is strictly smaller than the arrival rate? The

number of customers waiting for service grows without bound!

Fact 18
Suppose µ < λ. Then for any n and probability p < 1, there exists a t such that

the average number of customers waiting in line for service is at least n with

probability at least p.

Proof. Let ϵ = (λ− µ)/3, Nt be the number of customers arriving in [0, t], and St

be the number of services in [0, t]. Then by the definition of limit, there exists t1
such that for all t ≥ t1,

E[Nt]

t
≥ λ− ϵ, and

E[St]

t
≤ µ+ ϵ.

Hence for all t ≥ t1.
E[Nt − St] ≥ t(λ− µ+ 2ϵ).

By our choice of ϵ, λ− µ+ 2ϵ > 0. So set t = max{n[(1− p)(λ− µ+ 2ϵ)]−1, t1}
to complete the proof.

So in designing queues that work, it is essential that the service rate always

exceed the arrival rate. Note that one simple way of doing this is increasing the

number of servers.
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Fact 19
Suppose a G/G/1 queue has service rate µ. Then a G/G/s version of the queue

has service rate sµ.

Example 13 (Question of the Day)

Suppose a single server averages 4.3 minutes to complete a job. How many

servers are needed if the arrival rate is 13.4 per minute to keep the queue from

exploding?

Answer We want 4.3s ≥ 13.4. Since 13.4/4.3 ≥ 3.11, we require at least 4

servers to make sure that the queue length does not explode.

6.1 Queuing networks

In the G/G/s queue notation, the s servers are taken to be working in parallel.
This means that as arrivals come in, they have a choice of which queue to move to.

This can be represented by a graph.

Definition 36
A graph (aka network) consists of nodes (aka vertices) together with edges
(aka arcs) that consist of two nodes. In a directed graph each edge is an ordered

pair, and in an undirected graph each edge is a set of two nodes (so the nodes

in the edge are unordered.)

Example 14
The following graph has four nodes {a, b, c, d} and four edges

{(a, b), (a, c), (b, d), (c, d)}.

a

b

c

d

Remark Some authors reserve the word graph to mean objects where the edges

have no direction, that is, they are subsets of nodes of size 2 rather than ordered

pairs. For edges that are ordered pairs, they call it a directed graph.
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Definition 37
Given a set of queues, a routing network tells us where customers serviced by

one queue must go next.

Example 15
If the customers leaving Queue 1 and Queue 2 form the arrival process for Queue

3, then the routing network looks like

Queue 1

Queue 2

Queue 3

A queueing network feeds a routing network with arrivals, and then has an edge

representing customers leaving the system.

ABCD

Definition 38
A queueing network consists of an arrival arrow, a set of queues connected by

a routing network, followed by an exit arrow.

Example 16
Consider the following queue network:

Server 1

Server 2

Server 3

Here arriving customers go to either Server 1 or Server 2. Once they complete

service there, they move to Server 3, and after completing that service, they exit.

The part inside the rectangle is the routing network.

The previous example can also be written using subqueues.
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Queue 1 Queue 2

where the subqueues are

Server 1

Server 2

Queue 1

Server 3

Queue 2

In the previous example, the arriving customers have a choice of moving to

Server 1 or Server 2. We say that these two servers are in parallel.

Definition 39
In a routing network, if the output from a queue (or from the arrival process) has

a choice of which server to take, say that the servers are arranged in parallel. If
those customers exiting a queues immediate enter a second queue, say that the

queues are arranged in series.

Example 17
In the previous example, Server 1 and Server 2 are arranged in parallel, while

Queue 1 and Queue 2 are arranged in series.

6.2 Service rates for networks

The overall service rate for a routing network is determined by bottlenecks.

Definition 40
A server in a queuing system is a bottleneck if reducing the service rate for this

server reduces the service rate for the entire system.

For queues connected in series, it is the slowest (lowest service rate) queues that

determine the overall service rate.
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Fact 20
If queues Q1, Q2, . . . , Qn connected in series have service rates µ1, µ2, . . . , µn,

then the overall service rate is

min{µ1, . . . , µn}.

Any queue with µi = µ is a bottleneck in the system.

Queues that are in parallel are much better for the customer. But then every

queue is a bottleneck!

Fact 21
If queues Q1, Q2, . . . , Qn connected in parallel have service rates µ1, . . . , µn, then

the overall service rate is

µ = µ1 + · · ·+ µn.

Every server in a queue connected in parallel is a bottleneck server.
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Example 18
Suppose S1, S2, and S3 connect in series to make Q1, and S4 and S5 connect in

series to make Q2. Q1 and Q2 are then connected in parallel. The service rates

are

µ1 = 1.2, µ2 = 4.2, µ3 = 1.2, µ4 = 2.3, µ5 = 1.2.

1. Draw the queuing system.

2. What is the overall service rate of the queuing system?

3. What are the bottlenecks of the system?

Answer

1. From the description, the queuing system looks like:

S1 S2 S3

S4 S5

2. Q1 has service rate q1 = min{1.2, 4.2, 1.2} = 1.2. Q2 has service rate

q2 = min{2.3, 1.2} = 1.2. Since Q1 and Q2 are in parallel, their overall

service rate is 1.2 + 1.2 = 2.400 .

3. The bottleneck is both Q1 and Q2 since they are in parallel. The bottle-

necks inside Q1 are S1 and S3, and inside Q2 is S5. So the bottlenecks

are {S1, S3, S5} . You can check that decreasing the service rate for any

of these three nodes will decrease the rate of the overall system, while

decreasing the rate of S2 or S4 will not affect the overall service rate.

Problems
6.1 A queuing network’s overall rate is limited by what type of server?

6.2 If a customer has a choice of servers, then the servers are arranged in

.

6.3 An entry ramp to the freeway uses a stoplight that lets traffic on at a rate

of 2 cars every 3 seconds. If there are 24 cars waiting to get on the freeway,

on average how long are you going to have to wait?
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6.4 a) Consider the following queueing network. What is the overall system

service rate?

ENTER

Server 1

µ1 = 10/min

Server 2

µ2 = 7/min

EXIT

b) What is the overall service rate for the following network?

ENTER Server 1

µ1 = 10/min

Server 2

µ2 = 7/min

EXIT

6.5 In the previous problem, what are the bottleneck servers?

6.6 What are the bottleneck servers of the following network?

ENTER

Server 1

µ1 = 10 per min

Server 2

µ2 = 7 per min

Server 3

µ3 = 15 per min

EXIT
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6.7 What is the capacity of the network in the previous problem? [In other

words, what is the overall service rate of this network.]
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Chapter 7
Little’s Law

Question of the Day Suppose that I buy four cans of tuna at the grocery store

when it goes on sale every two weeks. I then consume the tuna at random iid

intervals. After collecting data for six months I find that at home the average

number of cans of tuna that I have is 7.3. On average, what is the time between

when I purchase the tuna and the can of tuna is consumed?

When entering a queue, the question of paramount importance to the customer

is: How long until my service is complete? We call this the time in system for the

customer.

Fortunately, there is a very general idea called Little’s law that relates the arrival

rate, the average size of the queue, and the average time that any particular customer

spends in the system.

Theorem 4 (Little’s Law)

Consider a queuing network over the time interval [0, t]. Let Lt denote the

average number of customers in a queuing system, Wt denote the average time

customers spend in the system, and λt be the initial number of customers in the

system together with customer arrivals during [0, t] divided by t.

Lt = λtWt.

We are usually operating over a finite time horizon, but it is good to understand

whether we can extend this to the infinity time horizon case.

The definitions of Lt and λt are straightforward as t→∞.

Definition 41
Let

L = lim
t→∞

Lt, λ = lim
t→∞

λt.
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The fact that we used λ here, when previously it was reserved for the arrival

rate, is not a coincidence.

Fact 22
For an G/G/s queue, the value of λ = limt→∞ λt is the arrival rate of the queue.

This fact uses more renewal theory. A renewal here is a customer arrival–once a

customer arrives, the time until the next arrival in a G/G/s queue is independent
of the previous arrival. In renewal theory, this fact follows from the Elementary

Renewal Theorem, and is very useful in understanding how these processes behave.

For the average waiting time, we let Ri denote the waiting time for customer i.
Then the average waiting time becomes as follows.

Definition 42
If Ri is the time in the system for customer i, let

W = lim
n→∞

1

n

n∑
i=1

Ri.

Theorem 5 (Little’s law, infinite time)

For any queuing network where the limitsW and λ exist, L exists as well, and

L = λW.

This theorem is quite amazing for several reasons. First, we have made virtually

no assumptions about the nature of the system. This is a universal law that works

regardless of the shape or characteristics of the network. It also does not depend

in any way on the distribution of the arrival times, or the service times. And yet,

despite the universality of the result, it is surprisingly powerful.

In a typical application of Little’s Law, we have access to two out of three of the

L, λ, and W , and seek to calculate the third.
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Example 19 (Question of the Day)

In this case 4 cans of tuna are bought every two weeks. Therefore, the rate of

arrivals λ is 4 cans per 2 weeks, or 2 cans per week. The average number of cans

in the system is 7.3. Hence

7.3 cans = W (2 cans/week),

so

W = 3.650 weeks .

That is, on average any individual can stays 3.65 weeks in the system.

Note that the queue discipline was not important here! If I adopt a FIFO system

and eat the cans purchased the earliest first, then the average time I have a can is

3.65 weeks. If I adopt a LIFO system and eat the cans purchased most recently first

(just to be clear, do not do this) then the average time a can is in the system is 3.65

weeks. Some cans will be eaten much earlier with this system, and some much

later, but the overall average will be the same.

Example 20
A manager wants to keep the average wait time for jobs in a supercomputing

cluster below 0.1 seconds. If jobs arrive on average at 105 per second, what must

the average number of jobs in the system be kept below to accomplish this?

Answer We want a wait of 0.1 second, and the arrival rate is 105, that gives
the number of customers in the system as

L = (0.1 s)(105/s) = 104 .

7.1 Proof of Little’s Law

Let n(s) denote the number of customers in the system (either waiting for service

or in service) at any particular time s. Then the graph of the function n(s) over
[0, t] might look something like this.
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Each time a customer arrives, n(s) increases by 1, and each time a customer is

served, n(s) decreases by 1.

The rest of our notation is as follows.

λt Arrival rate of customers in time [0, t].
Nt The number of customers in the system at time 0 plus those that

arrive in time [0, t].
Lt The average number of customers in the system over [0, t].
Wt The average time customers spend in the system over [0, t].
At The area under the n(s) for s ∈ [0, t].

Using integral notation,

At =

∫ t

0

n(s) ds.

The proof of the finite version of Little’s law comes down to looking at the area

under the n(s) curve in two different ways.

Proof of Little’s law. The way you find the average height of a function like n(t) is
to find the integral over an interval and then divide by the length of the interval.

In this case, this means

Lt =
At

t− 0
= At/t.

The average arrival rate over the interval [0, t] is similarly Nt/t.
Let tw denote the total time that customers are waiting in the system over [0, t].

Note that when a customer arrives at time Ti, the graph of n(t) jumps up 1. If that

customer stays in the system until time t, then the waiting time of that customer

would be (1)(t− Ti).
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Note that if a point is to the right of two places where the function is increasing, it

is counted twice, and so on.

However, at some points customers are leaving the system. If at time tℓ a
customer leaves the system, then that removes times t− tℓ from the overall waiting

time of all customers.

Therefore, the total waiting time is the area to the right of the curve when

the curve is increasing, minus the area to the right of the curve when the curve

is decreasing. But subtracting one from the other just leaves exactly the area

underneath the curve. That is, tw = At.

So the average waiting time is exactlyAt/Nt, the total waiting time of customers

divided by the number of customers in [0, t]. Hence

λtWt =
Nt

t
· At

Nt

=
At

t
= Lt.

Problems
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7.1 The long term time customers spend waiting in a G/G/5 queue is 15 min-

utes, and the average long term queue length is 18.4.

a) What is the arrival rate to this queue?

b) What is the expected time between arrivals in this queue?

7.2 If a queuing system has a long-term average of 13.1 jobs in the queue, and

each job waits an average of 1.1 days, what is the arrival rate?

7.3 Jobs arrive at a computer server at 11.4 per second. If the average number

of jobs waiting at any moment is 14.2, what is the average amount of time

a job waits before being served?
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Chapter 8
Idle time for G/G/s queue

Question of the Day A Google server receives on average 200 requests

a second, each of which takes on average 0.001 seconds to resolve. What

percentage of time is the server idle?

Summary

• Idle time for G/G/s queue is the long term average the queue has no cus-

tomers.

• Jump processes are stochastic processes that jump from one state to another

at discrete times.

• Continuous time Markov chains are jump processes where the time between

jumps are independent, and exponentially distributed with parameter that

only depends on the current state.

When dealing with queuing systems, we have seen that when the arrival rate

exceeds the service rate, the length of the queue explodes. What happens when

the arrival rate is lower than the service rate?

8.1 Capacity Utilization

Suppose that for the Question of the Day, that we are considering the interval of

time [0, t]. Since requests are coming in at 200 per second, assuming t is measured

in seconds, the average number of requests in the interval [0, t] will be 200t.
Each of these (on average) 200t requests takes time (on average) 0.0001 sec-

tions to resolve. By Wald’s Equality, we can say the time to resolve the average

of 200t requests that each take an average of 0.0001 time requires (on average)

(200t)(0.001) = 0.2t time.
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So (on average) 0.2t time out of the [0, t] interval is spent resolving requests. In

other words, 20% of the time in the interval [0, t], the computer is busy, and 80% of

the time it is idle.

This is not a rigorous derivation because it assumes that all of the service jobs

that arrived in the interval [0, t] were actually serviced in [0, t]. This might not be

true. For example, the arrivals and service times might have looked something like

this:

× ×
0 t

That being said, when t large, that extra bit of service on the end is negligible

compared to the size of t.
The percentage of time that the server was busy we found by multiplying the

arrival rate times the average time of service. The average time of service is one

over the service rate. So the average percentage of time that the server is busy will

be (for large times) the arrival rate divided by the service rate.

Recall that if I have s servers each with service rate µ, the overall service rate of
the network is µ · s.

Definition 43
For a G/G/s queue, the capacity utilization is

ρ =
λ

µ · s.

When the capacity utilization is less than 1, the queue is capable of serving its

customers at a rate faster than they arrive. But for capacity utilization greater than

1, the arrival rate is faster than the service rate, so the queue will grow on average

to be infinitely long.

Definition 44
For a statistic St that refers to the queue over time [0, t], if S = limt→∞ St exists

with probability 1, then S is the long term (aka long run aka steady state)
value of the statistic.

We have already seen this with elements of Little’s Law. The long run average

queue length is the limit of the average queue length over [0, t], and the arrival

rate is the long term statistic of the arrival rate over [0, t].
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Fact 23
For aG/G/s queue with finite expected service and interarrival times, and ρ < 1,
the long run (steady state) busy time is ρ.

Definition 45
The idle time for a queue is the long term percentage of time there are no

customers in the system.

When a queue is not busy, it is idle.

Fact 24
The long run idle time is 1− ρ.

For a single server, the busy time is the percentage of time the server is expected

to be servicing a customer. For multiple servers, the busy time is the percentage of

servers that are expected to be occupied at any particular time.

Proof idea For any given interval of time [0, t] some of the time will be spent

serving customers, and some of the time the system will be idle.

In time [0, t], the average number of customers that arrive is the arrival rate

times the time, or λt. Since the service rate is µs, on average each one of these

customers takes takes service time (on average) of 1/(sµ). Hence the time blocked

out by services is roughly λt/(sµ). That is, λ/(sµ) percent of the time is occupied

by services.

8.2 Stochastic Processes

The number of customers in the system at time t is an example of a stochastic

process.

Definition 46
A collection of random variables {Xt} is called a stochastic process. The

subscript t is the index of the variables.

Often the index t ∈ [0,∞) for a process that varies in time.

The idle time is measuring the time that the length of the queue is spending in

state 0. More generally, we can use indicator functions to measure the time spent

in other states.

50 271



Mark Huber Stochastic Operations Research

Definition 47
For a stochastic process {Xt}t≥0, the fractional time spent in state i is

1

t

∫
s∈[0,t]

I(Xt = i) ds.

Of course, that makes the steady state time spent in state i

lim
t→∞

1

t

∫ t

0

I(Xs = i) ds.

So see how this works in practice, consider an example.

Example 21
Suppose the process X0 starts in state a, spends 1.5 seconds in state 0 and then

jumps to state b, where it spends 1 second before jumping back to a. The process
then repeats. The process X0 looks like:

b

a

Then Ys = I(Xs = a) picks out those times the state of Xs is a, and replaces

them with a 1.

1

0

The average time spent in state a is then just the average of Ys over [0, t]. In the

limit as t goes to infinity, this converges to 0.6.

The process Xt is a example of a jump process. At a countable number of times

in [0,∞), it jumps from one state to another.

Definition 48
A stochastic process {Xt}t≥0 is a jump process if the path t 7→ Xt is constant

with a number of discontinuities that is countably infinite with probability 1.

8.3 Continuous time Markov chains

If the time between jumps it memoryless, that is, it is an exponential whose

parameter only depends on the current state, then we call the process a continuous
time Markov chain or CTMC for short.
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Definition 49
A stochastic process over state space Ω is a continuous time Markov chain
(CTMC for short) if it is a memoryless jump process. This means there is a

function λ : Ω→ [0,∞) where at time t, given {Xt′}t′≤t, the time τ of the next

jump satisfies τ − t ∼ Exp(λ(Xt)), and the distribution of Xτ only depends on

Xt.

A nice fact about exponentials is that the minimum of two exponentials is still

exponential.

Fact 25
Suppose X ∼ Exp(λX) and Y ∼ Exp(λY ) are independent. Then min{X, Y } ∼
Exp(λX + λY ).

Proof. Recall that A ∼ Exp(λ) if and only if P(A > a) = exp(−λa). So

P(min{X, Y } > a) = P(X > a, Y > a)

= P(X > a)P(Y > a)[independent]

= exp(−λXa) exp(−λY a)

= exp(−[λX + λY ]a)

which means min{X, Y } ∼ Exp(λX + λY ).

Consider theM/M/1 queue. There is an exponential amount of time until the

next arrival, and an exponential amount of time until the next service. So the next

time of either an arrival or service will also be exponential since it is the minimum

of two exponentials. This gives us the following result.

Fact 26
Let Xt be the number of customers in an M/M/1 queue at time t. Then Xt is a

continuous time Markov chain.

When the state space Ω is discrete, a continuous time Markov chains can be

represented using an arc labeled directed graph.

• Nodes are states the chain can be in.

• Arcs are labeled with rate of jump between states.
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0 1 2 3 · · ·

λ λ λ λ

µµµµ

Problems
8.1 The capacity utilization is usually denoted by what symbol?

8.2 If a queue has capacity utilization 30%, what is the long run idle time?

8.3 Suppose a G/G/4 queue has arrival rate 4 per min, and the average service

time for a single server is 0.8 minutes. What is the capacity utilization for

the queue?

8.4 Suppose aG/D/3 queue has arrival rate 3.2 per min, and the time to service

a single job is 27.2 seconds. Wht is the capcity utilization for the queue?

8.5 For a G/G/s queue with arrival rate 4.2 per second and the expected time

for a single server to serve a customer of 1.9 seconds, what is the maximum

number of servers we can have and still have less than 50% long run idle

time?

8.6 For a G/G/3 queue, if the service time of a single server is 3.2 minutes on

average and the capacity utilization is 80%, what is the arrival rate of jobs?

53 271



Chapter 9
Long term behavior of a CTMC

Question of the Day In anM/M/1 queue with average wait between arrivals

of 1 min and average service time for each server of 1.5 min, what is the

percentage of time the server is idle?

Summary

• Balance equations allow us to calculate the steady state distribution for most

CTMC.

• The detailed balance equations make this calculation easier.

• For theM/M/s queue it is possible to analytically solve the detailed balance

equations.

Earlier we showed that aM/M/1 queue was a continuous time Markov chain.

To understand how these chains evolve, consider the following example of a CTMC.

a b

c d

0.7

1.2

1.4

2.1
0.4

If we start off in state a at time 0, we can represent that using a probability vector

p0 = (1, 0, 0, 0). Saying the probabilities at time 0 is p0 means that the probability

of being in state a is 1 and the other states is 0. Now let us look at the probability

vector for times t > 0.
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Time 2 Time 3

Time 0 Time 1

a b c d a b c d

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

State

P
ro

ba
bi

lit
y 

ve
ct

or

Note that by time 3 the chain has already mixed, that is, the probability vector is

not changing much at this point. It is very close to

p∞ = (0.4660 . . . , 0.2038 . . . , 0.1553 . . . , 0.1747 . . .).

This is the steady state probability distribution. How can we calculate what p∞ is

(if it even exists)? The answer lies in the balance equations.

9.1 Balance

Suppose we think of the Markov chain as a series of pipes. The pipes reflect the rate

at which probability is flowing from one state to another. For instance, probability

in state a flows out to state b at rate 0.7.
We say that the probability distribution is in balance if the flow out of the state

exactly matches the flow into the state.

Let λ(i, j) be the rate at which state i jumps to state j. In the example above, for

instance, λ(c, a) = 2.1. The Ergodic Theorem states that for a countable state space

Ω CTMC, if the flow is balanced at a certain distribution, then that distribution is

unique, and will also be the steady state distribution.
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Theorem 6 (Ergodic Theorem)

For a countable state space Markov chain, let Ω denote the states with positive

probability of being reached from the starting state of the chain. Further, suppose

there exists a probability distribution π over Ω such that for all i ∈ Ω∑
j∈Ω

π(i)λ(i, j) =
∑
k∈Ω

π(k)λ(k, i).

Then the steady state amount of time spent in state i is π(i).

Definition 50
The set of equations ∑

j∈Ω

π(i)λ(i, j) =
∑
k∈Ω

π(k)λ(k, i).

for all states i are called the balance equations.

For the CTMC from earlier, there are 4 states, and so 4 balance equations. They

are

0.7π(a) = 2.1π(c)

[0.4 + 1.2]π(b) = 0.7π(a)

2.1π(c) = 0.4π(b) + 1.4π(d)

1.4π(d) = 1.2π(b).

If you solve this system of equations, you will find they are underdetermined.

So the best you can do is say something like:

(π(a), π(b), π(c), π(d)) = π(a)

(
1,

7

16
,
1

3
,
3

8

)
.

To make this a probability distribution, we add in one more equation:

π(a) + π(b) + π(c) + π(d) = 1.

Then we get

(π(a), π(b), π(c), π(d)) =
1

103
(48, 21, 16, 18).

This solution looks like
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Time Infinity

a b c d

0.00

0.25

0.50

0.75

1.00

State

P
ro

ba
bi

lit
y 

ve
ct

or

which is the same as the limiting behavior

9.2 Limiting behavior for theM/M/1 queue
For the M/M/1 queue, let Nt be the number of jobs in the system at time t
(including the one being serviced) andN∞ a draw from the steady state distribution.

Recall that our CTMC looks like:

0 1 2 3 · · ·

λ λ λ λ

µµµµ

It turns out we can write down explicitly what the steady state distribution is!

Fact 27
For theM/M/1 queue,

π(i) = (1− ρ)ρi

satisfies the balance equations.

Proof. Start with state 0:

π(0)λ(0, 1) = λ(1− ρ) = (λ/µ)µ(1− ρ) = π(1)λ(1, 0).

Now suppose i > 0:

π(i)λ(i, i+ 1) + π(i)λ(i, i− 1) = (1− ρ)[(λ/µ)iλ+ (λ/µ)iµ]

= (1− ρ)[λi+1/µi + λi/µi−1]

and

π(i+ 1)λ(i+ 1, i) + π(i− 1)λ(i− 1, i) = (1− ρ)[(λ/µ)i+1µ+ (λ/µ)i−1λ]

= (1− ρ)[λi+1/µi + λi/µi−1].
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So the balance equations hold!

This should look familiar!

Fact 28
Let π be the steady state distribution of anM/M/1 queue. Then forL = L∞ ∼ π,
the steady state line length satisfies

L∞ + 1 ∼ Geo(1− ρ).

In particular the average steady state line length is L = E[L∞] = ρ/(1− ρ).

Example 22 (Question of the day)

Given anM/M/1 queue with average wait between arrivals of 1 min and average

service time of 0.75 min, what is the percentage of time there are at most three

customers in the queue?

Answer Since we are not given the starting value, we should take this question

to mean the steady state probability that there are at most three customers in

the queue. From our steady state distribution for the M/M/1 queue, this will be

(1− ρ) + ρ(1− ρ) + ρ2(1− ρ) + ρ3(1− ρ).

Here ρ = (1/1)/(1/0.75) = 0.75, making the chance

0.25[1 + 0.75 + 0.752 + 0.753] = 0.6835 . . . .

Note that we can also use the steady state queue length with Little’s Law to

calculate expected wait time.
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Example 23
Suppose we have a Google server λ = 200 thousand per second, µ = 1000
thousand per second that is modeled as an M/M/1 queue. What is the average

time a job spends in the queue for the server?

L∞ + 1 ∼ Geo(1− 200/1000),

so

E[L+ 1] = 1/.8 = 1.25⇒ E[L] = 0.25.

By Little’s law:

L = λ ·W ⇒ 0.25 = 200 000W ⇒ W = 1.250 · 10−6
seconds .

9.3 Modeling theM/M/2 queue
So what changes when wemove from one server to two servers working in parallel?

• Let Nt by the number of customers in the system at time t.

– When N ≥ 2 both servers are working.

– When N = 1 one server is working.

– When N = 0 no servers are working.

• The key difference is that when both servers are working, the service rate

doubles to 2µ because they are working in parallel.

The graph of the CTMC is as follows.

0 1 2 3 · · ·

λ λ λ λ

2µ2µ2µµ
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Fact 29
For theM/M/2 queue with ρ = λ(2µ)−1 < 1, the steady state distribution is

π(0) =
1− ρ

1 + ρ

π(i) = 2ρi
1− ρ

1 + ρ
i ≥ 1.

and the expected steady state line length is

2ρ

1− ρ2
.

To prove this just verify that the balance equations are satisfied.

Note as ρ→ 1, the expected line length goes to infinity.

Problems
9.1 For an M/M/1 queue with arrival rate 3 per minute and service rate 5 per

minute, what is the steady state probability there are two or fewer jobs in

the system?

9.2 Consider an M/M/2 queue with arrival rate 3 per minute and service rate

per server of 5 per minute.

• What is the long term probability that exactly one of the servers is

idle?

• What is the long term probability that both of the servers are idle?

• What is the long term average number of servers that are idle?

9.3 Draw a graphical model of the continuous time Markov chain that models

the M/M/3 queue with arrival rate λ and single server service rate µ.

9.4 Write down the balance equations for theM/M/3 queue.
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Chapter 10
Studying data

Question of the Day Douglas Consulting records queue length at 5 times

during the day of 17, 21, 8, 7, 14. What is the average queue length? What is

the standard deviation?

Summary

• Basic statistics include the sample average and the sample standard deviation.

• R is an open source statistical toolkit and a programming language.

10.1 Statistics

Statistics is the science of collecting and analyzing data in order to make informed

decisions. Often the mathematics used in building statistical models involve the

use of probability, and so that subject is seen as being very closely related.

In fact, one of the most important theorems from probability is essential to

building statistical estimators, the Strong Law of Large Numbers. This theorem

says that for an iid stream of random variables, the sample average converges to

the expected value each random variable.

Definition 51
Let X1, . . . , Xn be random variables. Then

µ̂ =
X1 + · · ·+Xn

n

is the sample average of the data.

Often, the adjective sample is dropped, and this is called the average of the

random variables. It is important to be careful though, you do not want to confuse

the average of a set of numbers (which is a statistic) with the average of a random
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variable (which is an integral or summation depending on the type of random

variable.)

The sample average is an example of a statistic.

Definition 52
Given data (X1, . . . , Xn), a statistic is any function of the data.

For the sample average, the function is

µ̂(X1, . . . , Xn) =
X1 + · · ·+Xn

n
.

We often use µ (when we are not using it for the service rate of a queue) to

represent the average of a random variable X1. Note that the sample average has a

circumflex above it. That indicates that µ̂ is an estimate for µ. Statisticians read µ̂
as “hat mu“.

Once of the hallmarks of a good estimate is the property that as you take more

data, you obtain an estimate that converges to the thing you are trying to estimate.

This is called consistency.

Consistent estimators

Definition 53
A sequence of estimates (θ̂1, θ̂2, . . .) is consistent for parameter θ if

P
(
lim
n→∞

θn = θ
)
= 1.

Because we are working with probabilistic models, we cannot guarantee that

the estimates will converge to the right answer. But for a consistent estimator

we can guarantee that convergence will happen with probability 1. The Strong

Law of Large Numbers essentially says that the sample average of iid data gives

a consistent sequence of estimators for the mean of the distribution the data is

drawn from.

Theorem 7 (Strong Law of Large Numbers)

For X1, X2, . . . iid with finite mean,

P
(
lim
n→∞

X1 + · · ·+Xn

n
= E[Xi]

)
= 1.

In words, this says that the sample averages from an iid stream of data form a

consistent estimate for the expected values.
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Standard deviation

The second statistic we will consider is the sample standard deviation.
Recall that the standard deviation of a random variable is a measure of the spread

of the random variable away from its mean.

Definition 54
The standard deviation of a random variable X is√

E[(X − E(X))2].

Given a set of data, we do not know what E(X) is. So we use µ̂n to estimate

that, then find something close to the sample average of (Xi − µ̂n), then take the

square root of the whole thing.

Definition 55
Given a set of data X1, . . . , Xn, the sample standard deviation is

σ̂ =

√∑n
i=1(Xi − µ̂n)2

n− 1
.

Why divide by n−1 instead of n? The purpose of this is so thatE(σ̂2
n) = SD(X)2.

Practically, it gives us a reminder: you cannot estimate the spread of a random

variable with only a single sample! You need at least two draws from the distribution

before it makes sense to talk about estimating the random variable.

Fact 30
The σ̂n statistic is consistent for SD(X1).

10.2 Using R to calculate estimates

R is a statistical computing environment. That means that it contains built in

function for calculating the most common statistics, and also has a programming

language that you can use to accomplish tasks that are not built in.

R is open source, which means that it is free to download and use. We will also

be writing examples using RStudio, which is an integrated development environment
(or IDE) for working with R. The steps to download R and RStudio are as follows.

To install R

• Navigate your web browser to r-project.org.
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• In the first paragraph of the Getting Started section of the webpage, click the

link to download R.

• Click the link to a mirror (a repository where the R software can be download)

in a country near you.

• You will be taken to a page with three options: download R for Linux, down-

load R for Mac, download R for Windows. Click the link appropriate for your

system.

To install RStudio

• Navigate your web browser to rstudio.com.

• Click on the Download RStudio button.

• Scroll down past the paid options to the Installers for Supported Platforms

table. Select the installer appropriate for your system.

When you first open RStudio on your system, you will be faced with a screen

that looks something like this.

The program consists of a window that is divided into panes. One pane should
be labeled console.

Let’s start by typing some things into the console. You will see a > symbol next

to a blinking cursor. Try typing
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3

into the console at the cursor and hit return. R should return with just 3. It will

display

[1] 3

where the [1] indicates that the result starts with the first number in the vector

containing only the number 3.

To enter our data from the Question of the Day, we use the concatenate function
in R, which uses c as an abbreviation. Try entering

c(17, 21, 8, 7, 14)

into the console. The result should be

[1] 17 21 8 7 14

We will want to use this data more than once. So it makes sense to give this data

a name. That is, we wish to assign this data to a variable. To accomplish this, we

use the assignment operator in R, which looks like an arrow formed from the less

than symbol and a hyphen. Try the following in the console.

x <- c(17, 21, 8, 7, 14)
x

You should get the same result as before when you just typed in the data directly.

Now, whenever we want the data, we can just use its name, x.
In particular, we can calculate the sample average of the data by using the mean

function in R.

mean(x)

returns

[1] 13.4

We can calculate the sample standard deviation using the sd function in R. That
is,

sd(x)

returns

[1] 5.94138

Problems
10.1 Consider data {2.3, 1.7, 2.3, 0.6}.

a) What is the sample average?
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b) What is the sample standard deviation.

10.2 A farmer studying crop yield finds the four different places on the farm has

yields of 410, 286, 317, and 422 bushels per acre of corn.

a) What is the sample average of the yield?

b) What is the sample standard deviation of the yield?
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Simulation
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Chapter 11
Simulation

Question of the Day How can we picture simulations of queuing systems?

Summary

• Simulation creates random runs of a stochastic process on a computer to

understand the average behavior.

• Discrete event simulation is a specific type of simulation where the state

of the system changes at a discrete set of times.

Modeling and simulation Suppose that we do not have a simpleM/M/1 queue.
For instance, suppose interarrival times at a queue are Unif([0, 2]) while service
times follow a Unif([0, 1]) distribution. What is the long term average waiting time

of a customer?

While we can solve exactly for the long term behavior of M/M/s queues, in
general most models (and queuing networks) are too complicated to solve exactly.

Even the G/G/1 queue will not have an exact solution for fairly simple arrival

and service distributions (although asymptotic analysis is possible in this case).

When queues are connected in series or parallel in a routing network, the situation

becomes even worse.

In these cases, simulation provides an easier approach to understanding the

long-term behavior of the queue. In a simulation approach, a random instance of

the queue is generated by a computer program. The output from such a random

draw can then be analyzed using statistical tools to estimate the true average.

A computer program that has a random output is called aMonte Carlo algorithm,

after the famed casino in Monte-Carlo, Monaco.
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Types of simulation There are multiple ways of performing such Monte Carlo

simulations. One way is to track each entity (and customer) as it moves through

the system. Some examples of this entity based type of simulation include

• Particle simulations

• Traffic simulations

• Airplane boarding

One the other hand, some simulations track only the state of the system. Consider

a queue system with 10 customers in it.

• The entity approach would keep track of all ten customers individually. Each

customer is updated individually as they move through the queue.

• The state approach just records that their are ten customers in the state of

the system. Events such as a service or an arrival change the overall state of

the system.

The state approach can use far less memory and be much faster in practice than

the entity approach. On the other hand it can also be more difficult to design the

model in the first place, and then program the model.

G/G/1 queue An an example, consider again the G/G/1 queue. For this queue,

the state of the system can be entirely described by the following quantities.

• Length of the queue

• Current time

• Next arrival time

• Is the server free?

• If not, what is the next service time?

Definition 56
An event in a simulation is anything that changes the state of a system.

Note that this has nothing to do with an event in the probability sense of the

term! There are two types of events in the G/G/1 queue.

• Service event (this event reduces the number of jobs in the system by 1)

• Arrival event (this event increases the number of jobs in the system by 1)

69 271



Mark Huber Stochastic Operations Research

11.1 Discrete Event Simulation

A particular type of simulation that is useful for these types of models is Discrete
Event Simulation, or DES for short.

Definition 57
A Discrete Event Simulation (DES) is a type of simulation which focuses on

the events that change the state of the system. The key component is an event
list which holds all currently scheduled events and the times they occur.

This is a particular type of programming called event driven programming. Often
this type of programming is used for writing graphical user interfaces where the

events (such as mouse clicks) are generated by the user. Here, all of our events will

be generated randomly by the simulation itself.

The event list must keep track of

• the clock (current time),

• the current state of the system,

• the list of events and the times that are scheduled to occur.

When an event is scheduled to occur, it is executed. During execution, an event

can do either one or both of the following.

• Change the state.

• Schedule other events, that is, add events to the event list.

Graphical representation A directed graph is a mathematical object consisting

of nodes and arcs that move from one node to another. Formally, we sayG = (V,E),
where V is a set of nodes (aka vertices) and E ⊆ V × V is a set of ordered pairs of

the form (i, j) where the order between i and j matters. We say that the arc (i, j)
travels from i to j.

Definition 58
An event representation graph (ERG) for a DES uses nodes to represent events.

Below each node, the states that event makes to the system are written. An

arc from i to j represents that event i schedules node j. The label on the arc

represents the time between when event i is executed and event j is scheduled,
and the label can be a random variable indicating that each time the new event

is scheduled, an independent random variable with that distribution is drawn.

Arcs (i, j) can also be marked with a condition, in which case event i schedules
event j if and only if the condition is met.
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A B

t

Event A schedules event B after t time has passed.

A B

t ∼

(condition)

Event A schedules event B after t time has passed only if condition is true.

11.2 A DES and ERG for the G/G/1 queue
The Question of the Day asks about a G/G/1 queue. There are three types of

events that can change the state.

• Someone joins the queue

• Someone starts service

• Someone leaves service

We also add one more event that starts the process. All DES simulations will have

this event.

• Run event to initialize the system

The state of the system can be given in two variables. Let Q be the number of

customers waiting in line to enter service, and S be the number of servers that are

idle. We now examine each of the four events in turn.

Run event What the run event does is tell the system that there are no customers

waiting originally, and one server is free to serve customers. After a random amount

of time ta, the first customer will arrive.

• Initializes Q← 0, S ← 1

• Schedules the first arrival.

• In graph form, we can represent this event as follows.
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Run

S ← 1
Q← 0

Enter

ta
ta ∼ Unif([0, 2])

Enter event

• Increases the queue by 1

• If a server is free, schedules a start of service

• Then schedules next arrival

• That way never run out of arrivals!

Enter

Q← Q+ 1

ta ∼ Unif([0, 2])Start∼

(S > 0)

ta

• Note: no time on Enter→ Start means instantaneous

Start event

• Decreases the queue by 1

• Decreases the available servers by 1

• Schedules the end of service = leave event

Start

S ← S − 1
Q← Q− 1

Leave

ts
ts ∼ Unif([0, 1])
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Leave event

• Frees up a server

• If queue nonempty, should schedule a service

Start Leave

S ← S + 1

∼

(Q > 0)

ts ∼ Unif([0, 1])

Putting everything together Drawing all four of these events together gives

the following graphical representation of the DES for the G/G/1 queue.

Run

S ← 1
Q← 0

Enter

Q← Q+ 1

Start

S ← S − 1
Q← Q− 1

Leave

S ← S + 1

ta

∼

(S > 0)

ts

∼

(Q > 0)
ta

One server empty

queue Add arrival to

queue

One server busy

One server free

Start new service if queue nonempty

Start new service if server free

ta ∼ Unif([0, 2])

ts ∼ Unif([0, 1])

Problems
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11.1 Suppose in the DES for the G/G/1 queue above, ta ∼ Unif([0, 4]) and
ts ∼ Unif([1, 2]) are both in terms of minutes

a) What is the arrival rate?

b) What is the service rate?

c) What is the capacity utilization?

11.2 How would you modify the system above to model a G/G/s queue?
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Chapter 12
Flowchart for Discrete Event Simulation

Question of the Day How should ties be resolved in a DES?

Summary

• Themaster flowchart for DES tells us how to implement a simulation in

software.

• Ties and deadlocks can lead to unwanted behavior in the simulation if not

dealt with carefully.

Last time we had built an event representation graph (ERG) for a G/G/1 queue.

Run

S ← 1
Q← 0

Enter

Q← Q+ 1

Start

S ← S − 1
Q← Q− 1

Leave

S ← S + 1

ta ∼

(S > 0) ts

∼

(Q > 0)
ta

12.1 Watching the event list evolve

As events are executed, the event list, the current state, and the clock all change.

Consider starting the DES for the G/G/1 queue.

• The event list at the beginning just consists of a Run even at time 0. The

initial state has the number of customers waiting for service at Q = 0, and
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the number of available servers S = 1. So the state is (Q,S) = (0, 1). The
current clock time is t = 0.

t state type of event

0.00 (0, 1) Run

• In the event list, the Run event occurs at the earliest time. So the first thing

we do is execute this event at t = 0.

– There is an arc leaving Run labeled ta. So we roll a value for ta. Suppose
we get ta = 0.12. Then since the current time is 0.00, the Enter event
will be scheduled at time 0.12.

– We then remove Run from the event list.

The event of executing the Run event is that the event list looks like this.

t state type of event

0.12 (0, 1) Enter

• The next event to occur must occur at time t = 0.12. So we do the following.

– Advance the clock time to 0.12.

– Increase Q by 1.

– Since (S > 0) is true, schedule a Start event for the current time 0.12.

– Generate a value for ta. Suppose ta = 1.2.

– Schedule the the next Enter event at time 0.12 + 1.2 = 1.32.

The resulting event list is as follows.

t state type of event

0.12 (1, 1) Start

1.32 Enter

• The clock is still at 0.12. The next event to occur is the Start event at t = 0.12.
The steps are

– Update the state: S ← S − 1, Q← Q− 1.

– Roll ts ← 0.93.

– Schedule a Leave event at 0.12 + 0.93 = 1.05.
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– Remove the Start from the event list.

t state type of event

1.05 (0, 0) Leave

1.32 Enter

• Execute Leave event at t = 1.05:

– Release our server to be available again: S ← S + 1.

– Since Q = 0, do not schedule a Start. Note that for conditions like this,

this is the only time the event scheduling can be activated.

–

t state type of event

1.32 Enter

Some things to note.

• Because the first Run event schedules an Enter event, and each Enter event

schedules a single Enter event before being destroyed, there will always be

exactly one Enter event.

• Usually in practice, we quit and end the simulation after t greater than some

fixed tend.

12.2 The Event Scheduling Flowchart

Event-driven programming In the event driven programming paradigm, the

central object is the event list. It has certain properties for a DES.

• Each row of the event list is a time for an event and an event name.

• To run a DES, event list must be updated properly.
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The following flowchart describes how the event list should be updated.

Initialize

State

Event list

Advance Clock to

Time of next event

Execute event

Change State

Cancel Events

Schedule Events

Remove event

from list

Stop?

Summary statistics

YES

NO
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12.3 Building the ERG for two variations of queues

Queue with limited capacity Suppose that for our queue the line is not allowed

to extend indefinitely. Rather, when it reaches a value B, then any customer

arriving at the queue decides to go elsewhere for service. This can be implemented

by the following ERG.

Run

S ← 1
Q← 0

Enter

Q← Q+ I(Q < B)

Start

S ← S − 1
Q← Q− 1

Leave

S ← S + 1

ta
∼

(S > 0)

ts

∼

(Q > 0)
ta

When Q = B, then I(Q < B) = 0, and so the Enter event no longer increases the

number of customers in line by 1.

A common mistake with this type of problem is to put a condition on the arc

from Enter that schedules the next Enter. We do not want to do this because we
need to maintain always our infinite stream of Enter events. If we do not schedule

an Enter, it will cut off all future Enter events as well!

Two types of servers in parallel Suppose that we are faced with servers in

parallel that could be of different types with different rates. Then every time there

is an arrival, we will add it to Server 1 if it is free, or Server 2 if Server 1 is busy

and Server 2 is free.

The new state will be (Q,S1, S2), where Q is the number of jobs in line, S1 is

the number of servers of type 1
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Run Enter Start 1 Leave 1

Start 2 Leave 2

ta

∼

(S1 > 0)

∼
(S1 = 0, S2 > 0)

ts1

ts2

∼

(Q > 0)

∼

(Q > 0)

ta

Event State changes

Run S1 ← 1, S2 ← S2, Q← 0
Enter Q← Q+ 1
Start 1 S1 ← S1 − 1, Q← Q− 1
Leave 1 S1 ← S1 + 1
Start 2 S2 ← S2 − 1, Q← Q− 1
Leave 1 S2 ← S2 + 1

12.4 Ties and deadlocks

Definition 59
A tie in a Discrete Event Simulation is when two events are set to execute at the

same time.

This can be a problem when two events are using or releasing the same resources.

For example, suppose that a queue with two entry lines have Enter1 and Enter2

events occur simultaneously. Each one wishes to use the last server.

There are two simple ways to resolve ties.

1. Assign each event a priority value, and run tied events in order of priority.

2. Assign each time of event a small positive number (such as a uniform from 0

to 10−6
) so that the probability that a tie occurs is one.

The latter has the disadvantage that it essentially resolves ties

The worse situation than a tie is a deadlock.
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Definition 60
Deadlock occurs when event A would release resources needed by event B, and

event B would release resources needed by event A. Neither order for A and B is

acceptable.

The solution to deadlock is usually avoidance, which means we try to build our

systems so that this type of situation does not arise in the first place.

Problems
12.1 When an event is executes, it can change the state, cancel existing events,

or events.

12.2 After an event is executed, what happens to it?
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Chapter 13
Programming in R

Summary

• R Markdown files offer a way to keep your code organized.

• Functions in R are created in the same way as other variables, using the

assignment operator <-. They can have multiple inputs, and a single output

given through the return command.

13.1 Using R Markdown

R Markdown gives a way of organizing the code that you write to accomplish

tasks in R. Up until now, we have been typing commands directly into the console

in RStudio.

By using an R Markdown file instead, we can save the commands we give to

R. This allows us to bring back those commands as needed, or change them if we

discover we made a mistake or just want more information.

Creating a new R Markdown file To get started, open up RStudio. At the left

of the main menu is File. Under File is the New File option, and when you hold the

mouse over that a side menu is brought up. Select R Markdown from the side menu.

At this point a window will pop up that allows you to enter a Title and Author

Name. Change the title to First project, write in your name under Author, keep the

radio box on HTML and select the OK button when you are done.

This will open a new pane in RStudio with a template of an R Markdown file. By

default, this is in the upper left of the window. Now press the Knit button in the

toolbar right below the main menu.

The first time you press the Knit button, RStudio will ask you to save your R

Markdown file somewhere on your computers file directory. Go ahead and save

the file, without an extension. Then Knit will run, and the result will be an HTML
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Figure 13.1: Starting a new R Markdown file on a Mac.

Figure 13.2: Using the Knit button to turn the code into a document on Windows.

(Hypertext Markup Language, the same format used for webpages) file with your

document. A preview will automatically open.

Useful things to know about R Markdown

• When you want to start a new section, start the line with a # symbol. To

create a subsection, start with ##, subsubsections with ###, and so on.

• The lines at the beginning of the file between the -- lines form the YAML
header. The term YAML is a recursive acronym which stands for YAML

Ain’t Markup Language. Here you can change the title if you change your
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mind about that, your name if you change your mind about that, and the

date as time progresses.

• You can insert mathematics into your document using LATEXformatting. While

we will not be discussing how to use LATEXin this text, it is a very use-

ful typesetting language with an emphasis on writing professional look-

ing scientific documents. A good tutorial to get started can be found at

https://www.latex-tutorial.com/tutorials/.

Putting commands for the console in your document A powerful aspect

of an R Markdown file is the ability to put commands directly into the R console.

These commands are preceded by a line that reads “‘{r} and end with a line that

reads “‘. For instance, if you type the following into your document:

‘‘‘{r}
x <- 4
y <- 5
x + y
‘‘‘

then you will see that portion of your document becomes shaded. This is called a

code chunk.
Now press the green arrow in the upper right corner of the shaded area. This

types these commands into the console, and displays the result right below the

shaded area.

In this way, you can add whatever commands you like to a document. If you

press the Knit button again, a new HTML document will be created with the code

you created and the output of it.

13.2 Functions

So far we have only attached numbers to variables, such as x <- 4. However, we
can attach the far more complex function type to a variable as well.

A function consists of three parts.

• A set of inputs to the function.

• A set of commands.

• An output to the function.

Try adding the following code chunk to your document.
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Figure 13.3: The green arrow can be used to execute a code chunk. (Windows version pictured.)

add <- function(x, y) {
return(x + y)

}
add(3, 4)

When you evaluate this code chunk outputs:

[1] 7

Here the function was placed in the add variable. There are two inputs to this

function, x and y. The function returns the value of x + y. This is why add(3,
4) returns the value 7.

A function need not have any inputs, and it might not have any outputs either.

But be aware that you can always have inputs and an output if you need them.

13.3 Getting help

There are many ways to learn about functions in R. Outside of RStudio, an easy

way to learn about something is to Google <topic> in r. Inside Rstudio, if
you precede the name of a function with a ?, the help for that function will open

up in one of the panes. For instance, ?runif will take you to the help for the

runif function, which generates a uniform variate over [0, 1].
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13.4 Strings

So far our variables have held numbers and functions. They can also hold a variable

type called a string. To denote a string in R, surround the characters with either

single quotes (’) or double quotes (").

x <- "Test"
print(x)

## [1] "Test"

y <- ’case’
print(y)

## [1] "case"

Whether using single or double quotes, the resulting variable is treated in exactly

the same way by R.

Problems
13.1 True or false: strings must always be enclosed in single quotes.

13.2 True or false: preceding a command in R by ? returns help on the command.
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Chapter 14
Implementing a DES in R

Question of the Day Use simulation to determine for a G/G/1 queue with

interarrivals iid uniform over 0 to 2 minutes, and service times uniform over 0 to 1

minutes, what is the average waiting time for a customer?

Review of the DES At each step in a DES simulation, the following tasks are

performed.

• Pull earliest event from event list

• Execute the event

a. Update state

b. Schedule new events

• Remove event from event list

• If any events remain, go to step 1

14.1 R Code for the DES

There are two variables that we will want all of our functions to be able to modify.

These are the sim variable that contains the event list, and the state variable

that contains our state. In order for all functions to be able to modify these, we

must make these global variables. In R we can make a variable global by using <<-,
the global assignment operator.

Our first step in implementing a DES in R is to write a master function that runs

these steps. To accomplish this, we will create a variable sim that holds the event

list. This variable sim will be a tibble, which is a type of data variable in R that

allows for different types of variables to be combined in a tabular format.

To use a tibble data type, first make sure a package (also called a library) named

tidyverse has been loaded into the R environment. This can be done with the

library function.
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# install.packages("tidyverse")
library(tidyverse)
library(knitr)

Note that the first line of this code chunk reads

# install.packages("tidyverse").

The # indicates that this is a comment, that is, it will not be executed as code.

Anything that follows a # in a line of code is not executed.

The reason it is there, is that before you load a library into R, you must first

download the library from the R repository to your computer. In other words, a

library is similar to software, you first install it on your computer (the command

install.packages("tidyverse") does this, and then you can use the

package by writing library(tidyverse) before starting your code.

The tidyverse library allows us to use tibbles, the knitr library includes

commands for displaying tibbles as tables. We can try this out by creating a simple

event list. We will use a tibble to hold the event list. It can be created by calling the

function named tibble. For instance, we can create an initial event list with just

one event on it as follows.

# Set up the event list as a global variable
sim <<- tibble(
time = 0,
type = "Run"

)

time type

0 Run

Next we set up the main loop. This runs the flowchart for the DES, by pulling an

event from the event list, removing it from the event list, and executing the event.

# main loop of the simulation
mainLoop <- function(maxsimtime, printFlag = TRUE) {

while((nrow(sim) > 0) & (sim[1, 1] < maxsimtime)) {
if (printFlag) {
print(sim)
cat(’\n’)
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}
event <- slice(sim, 1) # take first event (Step 1)
sim <<- slice(sim, -1) # drop first event (Step 3)
executeEvent(event) # execute event (Step 2)

}
}

We used several new functions for mainLoop. Here’s more detail on what is

going on.

• slice(sim,\ 1) returns the first row of the tibble as the variable event.
• slice(sim,\ -1) returns everything except the first row of the tibble.

• nrow(sim) counts the number of rows in the tibble

• sim[1, 1] returns the element in the first row and column of the tibble,

so for sim the first time of the first event.

• The & means logical and. The statement thing1 & thing2 is true if and

only if both thing1 and thing2 are true.

• A while loop repeats all the instructions surrounded by { and } until the

condition in parenthesis that follows the while keyword is true. In this

case, the loop will run over and over again as long as the event list still has

at least one event in it and the time of the next event does run past our limit

maxsimtime.

The final line in the while loop calls executeEvent. Until we define this
function, we cannot use mainLoop without getting an error. So we look at that

next.

As an example, consider our ERG for the G/G/s queue from earlier.

This has four events, Run (start the simulation), Enter (customer arrival),

Start (customer begins service), and Leave (customer leaves service). We will

use if statements to accomplish this. An if statement executes the statement that

follows if the logical expression right after the if keyword is true. Otherwise it
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does nothing. We use if statements to decide which type of event we are executing,

and we also them within events to decide if the conditions on arcs are true or not.

executeEvent <- function(event) {
et <- event$time # Time for new clock
if (event$type == "RUN") {

sim <<- add_row(sim, time = ta(), type = "ENTER")
}
if (event$type == "ENTER") {

state["q"] <<- state["q"] + 1;
sim <<- add_row(sim, time = et + ta(), type = "ENTER")
if (state["s"] > 0)
sim <<- add_row(sim, time = et, type = "START")

}
if (event$type == "START") {

state["q"] <<- state["q"] - 1;
state["s"] <<- state["s"] - 1;
sim <<- add_row(sim, time = et + ts(), type = "LEAVE")

}
if (event$type == "LEAVE") {

state["s"] <<- state["s"] + 1;
if (state["q"] > 0)
sim <<- add_row(sim, time = et, type = "START")

}
sim <<- arrange(sim, time) # sort event list by times

}

The above used some new functions:

• add_row adds a new row to a tibble.

• arrange sorts a tibble according to the designated variable.

It also used a new logical operator

• When testing equality in an if statement, use == to test if two things are

equal.

These events call the functions ta and ts to generate interarrival and service

times. So we need to create these functions.
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# Interarrival times Unif([0,2])
ta <- function()
return(runif(n = 1, min = 0, max = 2)) # interarrival times

# Service times Unif([0,1])
ts <- function()
return(runif(n = 1, min = 0, max = 1)) # service times

At this point we need one more function to initialize the event list, initialize the

state, and then call mainLoop. This function will be called runSim.

runSim <- function(maxsimtime, printFlag = TRUE) {
# Initialize event list
sim <<- tibble(time = 0.0, type = "RUN")
# Initialize state of the system
state <<- c(1, 0)
names(state) <<- c("s", "q") # 1 server, 0 in queue
mainLoop(maxsimtime, printFlag)

}

Let us give it a short sample run.

runSim(5)

## # A tibble: 1 x 2
## time type
## <dbl> <chr>
## 1 0 RUN
##
## # A tibble: 1 x 2
## time type
## <dbl> <chr>
## 1 1.49 ENTER
##
## # A tibble: 2 x 2
## time type
## <dbl> <chr>
## 1 1.49 START
## 2 2.25 ENTER
##
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## # A tibble: 2 x 2
## time type
## <dbl> <chr>
## 1 2.15 LEAVE
## 2 2.25 ENTER
##
## # A tibble: 1 x 2
## time type
## <dbl> <chr>
## 1 2.25 ENTER
##
## # A tibble: 2 x 2
## time type
## <dbl> <chr>
## 1 2.25 START
## 2 2.45 ENTER
##
## # A tibble: 2 x 2
## time type
## <dbl> <chr>
## 1 2.45 ENTER
## 2 2.74 LEAVE
##
## # A tibble: 2 x 2
## time type
## <dbl> <chr>
## 1 2.74 LEAVE
## 2 3.90 ENTER
##
## # A tibble: 2 x 2
## time type
## <dbl> <chr>
## 1 2.74 START
## 2 3.90 ENTER
##
## # A tibble: 2 x 2
## time type
## <dbl> <chr>
## 1 3.23 LEAVE
## 2 3.90 ENTER
##
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## # A tibble: 1 x 2
## time type
## <dbl> <chr>
## 1 3.90 ENTER
##
## # A tibble: 2 x 2
## time type
## <dbl> <chr>
## 1 3.90 START
## 2 5.88 ENTER
##
## # A tibble: 2 x 2
## time type
## <dbl> <chr>
## 1 4.33 LEAVE
## 2 5.88 ENTER

If we turn printFlag off (switch it to FALSE), then the simulation does not

print the event list at every step.

runSim(10, printFlag = FALSE)

Problems
14.1 We can generate the same set of pseudorandom numbers every time in our

simulation by setting the at the beginning of the simulation.

14.2 What is the assignment operator in R that makes a variable global?
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Chapter 15
Statistics in R

Question of the Day How can we determine the average queue length for a

simulation?

Summary

• We can use the ideas of Little’s Law to keep track of statistics that will help

us calculate average queue length.

• Seeds allow us to fix the output of a random simulation.

• Bar plots and boxplots give an idea of how a random variable is distributed.

15.1 Adding statistics

In the Question of the Day, we not only want to simulate the G/G/1 queue, we
also want to be able to estimate the average waiting time.

Last time we introduced global variables state (for the state of the system) and

sim (for the event list). When we need to gather statistics, we add a new global

variable statistics.
There are an infinite number of times in the simulation, and so we will need to

careful about keeping track of the queue length. Our goal will be to keep track of

the area under the graph of the number of customers in the system (much as we

did in the proof of Little’s law) and use this statistic to find the average waiting

time in the end.

Our initial mainLoop will add a statistics variable with three entries.

One keeps track cumulatively of the total area under customers in the sys-

tem, that will be named Area''. The second keeps track of the
cumulative total of time that the server is idle, that
will be namesIdle’‘. Finally, the third entry keeps track of the total number of

arrivals to the queue. This component is named “Arrivals”.

The number of customers in the system consists of those waiting in the queue

plus any that are being currently served. In code, this is
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(1 - state["s"]) + state["q"]

If we multiply this by the length of a time interval representing how long we

have spent with this number of customers in the system, this gets added to the

total area underneath the customers in system curve. The time interval will have

length equal to the time of the next event minus the current time.

Similarly, the server is idle if state["s"] > 0, and multiplying by the time

the server is idle adds to the area underneath the idle graph. Finally, we will keep

track of the number of arrivals to the system. This only gets updated if the current

event type is “ARRIVAL”.

mainLoopStat <- function(maxsimtime, printFlag = TRUE) {
time <- 0 # record original time
while((nrow(sim) > 0) & (sim[1,1] < maxsimtime)) {

if (printFlag)
print(sim)

event <- slice(sim, 1) # take first event (Step 1)
sim <<- slice(sim, -1) # drop the first event (Step 3)
executeEvent(event) # execute the event (Step 2)
# update statistics and clock time
time <- min(sim[1,1], maxsimtime)
statistics["Area"] <<-

statistics["Area"] +
(time - event$time) * ((1 - state["s"]) +
state["q"])

statistics["Idle"] <<-
statistics["Idle"] +

(time - event$time) * (state["s"] > 0)
if (event$type == "ENTER")
statistics["Arrivals"] <<-
statistics["Arrivals"] + 1

}
}

These statistics need to be initialized at 0 (and the components named) for this

to work properly.

runSimStat <- function(maxsimtime, printFlag = FALSE){
# Initialize event list
sim <<- tibble(time = 0.0, type = "RUN")
# Initialize state of the system
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state <<- c(1, 0)
names(state) <<- c("s","q") # 1 server, 0 in queue
# Initialize statistics for the system
statistics <<- c(0, 0, 0)
names(statistics) <<- c("Area",

"Idle",
"Arrivals")

# Run simulation
mainLoopStat(maxsimtime, printFlag)

}

Once these statistics have been collected, we can use them to find things like the

average time a customer spends in the system.

reportSimStat <- function(maxsimtime) {
# Turn totals into averages
avstat <<- statistics / maxsimtime
# Use this to estimate waiting time for arrivals
names(avstat) <<- c("Average system quantity",

"Idle percentage",
"Mean interarrival time")

hatW <- avstat["Average system quantity"] *
avstat["Mean interarrival time"]

names(hatW) <- "Estimating waiting time"
return(hatW)

}

Finally, we can do a run for an 8-hour (480 minute) day.

endtime <- 480
runSimStat(endtime)
reportSimStat(endtime)

## Estimating waiting time
## 0.6622592

15.2 Pseudo-random numbers

A random stream of numbers is a mathematical idealization of lack of information.

We can come close to this ideal by using complicated algorithms that make the

next number in the stream unpredictable. It turns out that this is the same kind of
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mathematics needed for cryptographic systems. Decades of the Cold War followed

by decades of Internet commerce have made our cryptographic schemes (and hence

our ability to generate random numbers) very good indeed.

To distinguish an ideal stream of random variables from the kind generated

by computers, the computer stream is called a pseudorandom stream of random

variables.

Definition 61
A stream of numbers generated by a deterministic computer algorithm is called

a pseudo-random stream of random variates.

Every time we run a simulation, the results will be different. However, sometimes

(for debugging purposes or to compare different codes) it is helpful to have the

same pseudo-random variables used each time. The way to accomplish this is to

set the seed of the generator.

Definition 62
The seed of a pseudorandom stream completely determines the values of the

stream.

The set.seed function can be used to set the seed in R. For instance,

set.seed(123)
x <- runif(3)
set.seed(321)
y <- runif(3)
set.seed(321)
z <- runif(3)
kable(tibble(x, y, z))

x y z

0.2875775 0.9558938 0.9558938

0.7883051 0.9372855 0.9372855

0.4089769 0.2382205 0.2382205

Thex andy variables receive different values, because the seedwas set differently

before each of these calls. If we do this before a simulation, we will fix the random

variables generated by the simulation, and so the results will come out the same

way each time.
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set.seed(123454321)
runSimStat(endtime)
reportSimStat(endtime)

## Estimating waiting time
## 0.534187

The above three lines of code will set the seed to 123454321, and will always

result in an output of 0.534187 from the simulation no matter how many times it is

run.

15.3 Distributions of statistics

Suppose we want to know when does the length of the queue get very long, and

how often. We can accomplish this with a statistics variable with more rows, and

one way to do that is to make the statistics variable into a tibble.

statistics <<- tibble(
time = 0,
queue_length = 0,
avail_s = 1

)

Now let’s insert this code into runSimStat:

runSimStat <- function(maxsimtime, printFlag = FALSE) {
# Initialize event list
sim <<- tibble(time = 0.0, type = "RUN")
# Initialize state of the system
state <<- c(1, 0)
names(state) <<- c("s","q") # 1 server, 0 in queue
# Initialize statistics for the system
statistics <<- tibble(

time = 0,
queue_length = 0,
avail_s = 1

)
# Run simulation
mainLoopStat(maxsimtime, printFlag)

}
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Next we need to update our statistics handling in mainLoop. Note that the row
name of the tibble is one more than the current length of the queue.6.6

mainLoopStat <- function(maxsimtime, printFlag = TRUE) {
time <- 0 # record original time
while((nrow(sim) > 0) & (sim[1,1] < maxsimtime)) {

if (printFlag)
print(sim)

event <- slice(sim, 1) # take first event (Step 1)
sim <<- slice(sim, -1) # drop first event (Step 3)
# update statistics and execute event
statistics <<- statistics %>%

add_row(time = event$time,
queue_length = state["q"],
avail_s = state["s"])

executeEvent(event) # execute the event (Step 2)
statistics <<- statistics %>%

add_row(time = event$time,
queue_length = state["q"],
avail_s = state["s"])

time <- min(sim[1, 1], maxsimtime)
# Update time spent in each state
# state["q"] + 1 is the row
# 1 is the column
}

}

runSimStat(100, printFlag = FALSE)

With this more detailed data, it is possible to plot the queue length as a function

of time. For instance, the following plots the queue length between the times of 25

and 50.

statistics %>%
filter(time >= 25 & time <= 50) %>%
ggplot() +

geom_line(aes(x = time, y = queue_length),
color = "blue")
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We can also look at the server availability over time. For instance, the following

is the server availability from times 0 up to 25.

statistics %>%
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ggplot() +
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# xlim(0, 25)

Cumulative statistics of queue length

rm(statistics)
statistics <<- tibble(

queue_length = 0:20,
time_spent = rep(0, length(queue_length))

)

Now let’s insert this code into runSimStat:

runSimStat <- function(maxsimtime, printFlag = FALSE) {
# Initialize event list
sim <<- tibble(time = 0.0, type = "RUN")
# Initialize state of the system
state <<- c(1, 0)
names(state) <<- c("s","q") # 1 server, 0 in queue
# Initialize statistics for the system
statistics <<- tibble(

queue_length = 0:20,
time_spent = rep(0, length(queue_length))

)
# Run simulation
mainLoopStat(maxsimtime, printFlag)

}

Next we need to update our statistics handling in mainLoop. Note that the row
name of the tibble is one more than the current length of the queue.6.6

mainLoopStat <- function(maxsimtime, printFlag = TRUE) {
time <- 0 # record original time
while((nrow(sim) > 0) & (sim[1,1] < maxsimtime)) {

if (printFlag)
print(sim)

event <- slice(sim, 1) # take first event (Step 1)
sim <<- slice(sim, -1) # drop first event (Step 3)
executeEvent(event) # execute event (Step 2)
# update statistics and clock time
time <- min(sim[1, 1], maxsimtime)
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# Update time spent in each state
# state["q"] + 1 is the row
# 1 is the column
statistics[state["q"] + 1, 2] <<-

statistics[state["q"] + 1, 2] + (time - event$time)
}

}

Let’s do anM/M/1 queue with ρ = 1/2.

ta <- function() return(rexp(1, rate = 1))
ts <- function() return(rexp(1, rate = 2))

runSimStat(480, printFlag = FALSE)

Now we can make a bar graph of the results.

statistics %>%
ggplot() +

geom_bar(aes(x = queue_length, y = time_spent),
stat = "identity", color = "blue",
fill = "gray") +

theme_classic()

0

100

200

300

0 5 10 15 20
queue_length

tim
e_

sp
en

t

102 271



Mark Huber Stochastic Operations Research

Does this fit with our understanding of Continuous Time Markov chains? Recall

that we said that the total number of customers in the system is a geometric random

variable with parameter ρ, which is 1/2 in this example.

Problems
15.1 Consider the event representation graph (ERG) for a simple G/G/s queue

where S is the number of servers available andQ is the number of customers

waiting for service to begin.

RUN ENTER

Q← Q+ 1

START

S ← S − 1
Q← Q− 1

LEAVE

S ← S + 1

ta
o

(S > 0)

ts

o
(Q > 0)

ta

Now suppose we change the state change in the ENTER event. Instead of

Q← Q+1, supposeQ← Q+ I(Q < 10), where I(·) is the usual indicator
function. Explain what effect this would have on the queue being simulated.

103 271



Chapter 16
Stochastic Petri Nets

Petri nets are a way to build a simulation that in some cases can be analyzed

completely to understand their behavior. They are commonly used as an agent
based simulation system.

16.1 History

Petri nets were developed by Carl Petri 1962 with the goal of understanding issues

in simulation where multiple events can happen simultaneously.

Formally, they are an example of a bipartite graph.
Say that a directed graph with node set V is bipartite if there is a partition

(V1, V2) of V such that any edge (v1, v2) has one end in V1 and the other in V2.

In a Petri net, nodes are divided into places and transitions. Each place has a

nonnegative integer label which says how many token occupy the place.

A Petri Net then works as follows.

• Say at a transition t is enabled if every place connected to t by an incoming

edge has at least one token.

• Choose any enabled transition to fire. When the transition fires it removes a

token from any place with an arc to t, and adds a token to all places connected
by an outgoing arc from t.

For example, consider the following state.

Here the transition is represented by filled in skinny rectangle, the places are

represented by circles, and tokens are represented by small filled in circles.
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Because the single place with an arc leading to the transition has a token, the

transition is enabled, and because it is the only enabled transition, it fires. This

removes the token from the incoming place, and adds a token to the outgoing place.

Why Petri nets?

The state at each time step consists of the number of tokens in each place. Because

of this, it is often possible to analyze completely the reachable states from a given

initial state. That gives the ability to ensure that the simulation stays under control,

and nothing unexpected can occur.

Moreover, the idea of a Petri net is that it should be constructed to be robust

under firing order. That is, no matter how the choice of which transition to fire is

made, the overall behavior of the system should be the same.

Generators

In a DES, a self-loop on an event creates a generator that keeps repeating over and

over again. This was used to create a set of arrivals for a G/G/s queue.
In Petri nets, a generator is any transition that does not have any incoming

nodes. Such a Petri Net will always fire.

In a Petri net, a generator is a transition with no incoming places.

Example with two generators

Suppose a manufacturing station takes as input an inside piece and a case, and

puts them together to make a USB drive.

Then for an initial state, the Petri net could look like this.

If T1 fires, the state changes to the following.

If T2 then fires, the state changes to the following.
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At this point T1, T2, and T3 are all enabled. If T3 fires, the resulting state is:

The states that can be reached from the initial state are called reachable.
The reachability graph of a Petri net has a node for every reachable state, and

a directed edge from state v to state w labeled by transition t, if t is enabled in v,
and firing t changes the state from v to w.
A state w is reachable from a state v if there is a directed path from w to v in

the reachability graph.

In Place 1 and Place 2, there is at most 1 token. In Place 3, there is no bound on

the number of possible tokens. Call Place 1 and 2 1 bounded.
A place is k-bounded if the maximum number of tokens in the place for any

reachable state is at most k.
States that are 1-bounded are also called safe.

Absorber

The opposite of this is an absorber, which is a transition with no outgoing edges.

This is useful when serviced customers leave the system.

An absorber is a transition with no outgoing places.

16.2 Timed transitions

While the single time step Petri Nets are nice it is a simple extension to add a clock

and a time on the transition. In the following net, once the transition on the left

fires, the token on the outgoing place does not appear for 2 time steps. This would

be a D/D/1 queue.
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If a random variable is given for the time, then it is independently rolled each

time the transition fires.

A Petri net is stochastic if it contains random variables in the transition firing

times.

16.3 Weighted transitions

A common extension is to assign a weight to each arc. The weight on an incoming

edge to a transition t represents the number of tokens needed to cause t to fire,

and these tokens are removed during firing. Similarly, the weight on an outgoing

edge represents the number of tokens created by t firing.
Consider the following example.

The two transitions on the left are generators, while the one on the right needs

2 tokens from Place 1 and 1 token from Place 2 to produce one token for Place 3.

The states for this net will depend on the order in which the transitions fire. If

the generators fire first, followed by the rightmost transition (when enabled), the

states will be

(0, 0, 0)

(1, 1, 0)

(0, 1, 1)

(1, 2, 1)

(0, 2, 2)

.

.

.

No matter what order the transitions fire, Place 1 will be 2 bounded, but Places 2
and 3 are unbounded.
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16.4 Inhibitor arcs

An inhibitor arc prevents a transition from firing when the place it comes from is

occupied. This can be useful in controlling which transition goes first. Moreover, it

extends the power of Petri nets greatly: with inhibitor arcs, Petri nets are Turing

complete.

Inhibitor arcs are usually denoted using an arc with an empty circle at the end. In

the following example, the arc from Place 2 to Transition 3 will prevent Transition

3 from firing as long as Place 2 has one or more tokens.
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Decision Theory
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Chapter 17
How to make decisions

Question of the Day How should decisions be made?

Summary

• Decision theory is the study of how to make decisions.

• There are several ways to measure the quality of a decision, they often lead

to different decision making.

What do decide, herbicide, and homocide have in common? They all end with

the Latin prefix -cide. This comes from the Latin caedere, which means to cut.
When we de-cide, we are using de which is Latin for off. Therefore, to decide is to

cut off, in this case, possible actions that you might have taken.

If it is clear what the outcome of a decision will be, then there is no need for

decision theory. However, when there are random effects that interact with our

decision for the final result, then models can be helpful in deciding which decision

is best.

Definition 63
Decision theory is the mathematics of optimal decision making under incom-

plete knowledge.

17.1 Variables and Payoffs

There are two types of variables in decision theory.

Definition 64
State variables are things that you cannot control.

For instance, the behavior of the U.S. economy over the next five years is out of

the control of a decision maker within most corporations. The decision maker must
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treat this variable as something that is generated independent of their actions. On

the other hand, the number of workers to hire for the Christmas season is within

most corporation’s control. This would be a decision variable.

Definition 65
A decision variable has a value that you control.

Once you decide on how to set your decision variables, when the state variable

values are factored in, the result is a payoff.

Definition 66
Given a decision, there will be a payoff which is the benefit to you based on the

values of the state variables.

Definition 67
If there are a finite number of decisions a1, . . . , an possible, and only a finite

number of possible values for the state variables s1, . . . , sm, then the payoff
matrix is the matrix whose (i, j)th entry is the payoff from employing decision

ai when the true value of the state variable was sj .

Example 24
The final in the course might be easy or hard. A student can choose to study or

not study for the final. The payoff matrix might then be as follows.

Study Don’t Study

Hard Satisfaction Regret

Easy Wasted Time Relief

Usually state variables are random because the decider only has partial infor-

mation. In the final example, the decider does not know whether the final will be

hard or easy, and must make a decision based not on the true answer, but instead

upon a probabilistic model of the true answer.

17.2 Utility

The first step in making this a mathematical problem is to assign a numerical value

to each outcome. This numerical value is known as the utility of the outcome.
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Definition 68
A utility is a numerical score for each outcome that respects preferences. That

is, if the utility of one outcome is less than the utility of the second outcome, the

second is preferred over the first.

A note about money.

• Often monetary payoff can be rough substitute for utility, especially when

the numbers are small relative to the decision makers relative wealth.

• For those with no money, however, utility rarely matches monetary payoff.

• For example, $10 to someone with no money has much different value than

$10 to someone with $1 000 or $1 000 000.

• This effect is known as diminishing marginal returns.

• In terms of Calculus, this means that the derivative of the utility versus

money curve is a decreasing function.

money

utility

Other terms for a decision are action and strategy. That is why the formal name

for a decision theory problem is a strategic form.

Definition 69
The strategic form of a decision problem is a triple (X,Ω, A) where

1. X is the nonempty set of strategies for the decider.

2. Ω is the nonempty set of states of nature.

3. A : (X × Ω)→ R is the payoff function.
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17.3 Domination

Sometimes decisions are easy to make. If taking one action always results in equal

or higher utility than a second action, regardless of the value of the state variables,

then it makes sense to always take the first action. We say that the first action

dominates the second.

Definition 70
For two actions ai, aj ∈ X , the action ai dominates aj if

(∀θ ∈ Ω)(A(ai, θ) ≥ A(aj, θ)).

Example 25
Consider payoff matrix with X = {a1, a2, a3, a4} and Ω = {θ1, θ2, θ3}.

a1 a2 a3 a4
θ1 5 0 2 1

θ2 5 3 3 2

θ2 0 4 2 1

Note that a3 always beats a4, no matter what the state of nature is! So we would

never use a4 in practice.

17.4 Algorithms for making a decision

Given a set of utilities in a payoff matrix, there are multiple ways that you can use

to decide what is the right decision.

Maximin The pessimist fears the worst. The strategy used by such an actor is to

choose the action where the worst payoff is the best possible. This is also called

the maximin choice.

Definition 71
The maximin strategy is

argmax
a∈X

min
θ∈Ω

A(a, θ).
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Example 26
For our previous example, the worst outcomes from each column are:

a1 a2 a3
0 0 2

Hence we would pick a3, since that maximizes the minimum value of the payoff.

Maximax The optimist hopes for the best. The strategy here is to choose the

action that has the highest possible payoff over the state variables. That is the

maximax strategy.

Definition 72
The maximax strategy is

argmax
a∈X

max
θ∈Ω

A(a, θ).

Example 27
Continuing our example, the largest payoff in each column is

a1 a2 a3
5 4 3

so the Maximax strategy chooses action a1.

Laplace’s Principle of insufficient reason Laplace considered how to make a

decision when you know absolutely nothing about a situation. In this case, it is

reasonable to use a uniform distribution. This means that we assume that every

possible outcome is equally likely. This model makes the state variable θ a random
variable. More recently, this principle has become known as using a Bayesian
approach with a noninformative prior. If every state is equally likely, then it makes

sense to pick the strategy which maximizes the expected utility.

114 271



Mark Huber Stochastic Operations Research

Example 28
Continuing our example, the expected utility of strategy a1 in our last example is

E(A(a1, θ)) = (1/3)(5) + (1/3)(5) + (1/3)(0) = 10/3.

Calculating for all three strategies gives

a1 a2 a3
10/3 7/3 7/3.

So like the optimist, the noninformative prior together with the Bayesian ap-

proach yields a choice of a1.

Of course, dividing each outcome by 3 did not change the relative merits of a1,
a2, and a3. Hence we can say that the choice made using Laplace’s principle is to

pick the action with the largest sum of utilities.

Definition 73
Laplace’s principle of insufficient reason chooses

argmax
a∈X

∑
θ∈Ω

A(a, θ).

Hurwicz Principle (Degree of optimism) The Hurwicz approach combines

the optimistic and pessimistic points of view by taking a linear convex combination

of their values.

Definition 74
For α ∈ (0, 1), the Hurwicz principle is

argmax
a∈X

[
αmax

θ∈Ω
A(a, θ) + (1− α)min

θ∈Ω
A(a, θ)

]
.

Some notes

• When α = 0 we are back with a maximin strategy

• When α = 1 is maximax

• When α ∈ (0, 1) we can shift from one strategy to another.

• Think of the optimal decision as a function of α.

115 271



Mark Huber Stochastic Operations Research

Example 29
Continuing our example:

a1 a2 a3
5α 4α 3α + 2(1− α)

Since 5α ≥ 4α for all α ∈ [0, 1], we can just take a2 out of the running right now.
That leaves the question of when is a1 better than a3? To find out solve

5α ≥ 3α + 2(1− α) = α + 2

to get α ≥ 1/2. Hence the result is

• For α ∈ [0, 1/2], decision a3.

• For α ∈ [1/2, 1], decision a1.

Problems
17.1 True or false: higher utility is good.

17.2 True or false: a higher payoff is good.

17.3 True or false.

a) Decision variables are variables that you control.

b) State variables can be either variables that you control or variables

that you do not control.

17.4 True or false.

a) There is one right way to make decisions based on a payoff matrix.

b) If the utility is always highest for one action regardless of the state

variables, that is the best action.

17.5 Suppose the utility of outcome s1 is 4, while the utility of outcome s2 is 4.2.
Which outcome is preferred?

17.6 Consider the following payoff matrix:

a1 a2 a3 a4

Θ1 4 2 0 6

Θ2 2 6 0 5

Θ3 1 3 7 3
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a) What decision should you make using the Maximin approach?

b) What decision should you make using the Maximax approach?

c) What decision should you make using the Laplace Principle of Insuffi-

cient Reason approach?

17.7 Continuing with the payoff matrix from the the last problem.

a) What decision should you make using the Hurwicz principle? [For

every α ∈ [0, 1], state what decision is made.]

b) What decision should be made using the Savage minimum regret

principle?

17.8 Further research indicates that Θ1 and Θ2 each have a 20% chance of oc-

curring, while Θ3 has a 60% chance. What decision maximizes expected

utility?

17.9 Consider the following payoff matrix

a1 a2 a3 a4

Θ1 -3 2 0 3

Θ2 2 6 -2 5

Θ3 1 3 5 3

a) What decision should you make using the Maximin approach?

b) What decision should you make using the Maximax approach?

c) What decision should you make using the Laplace Principle of Insuffi-

cient Reason approach?

d) What decision should you make with the Hurwicz Principle for α ∈
[0, 1]?
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Chapter 18
The Utility Theorem

Question of the Day Under what conditions do utilities exist?

Summary

• For a particular action, regret is the difference between the best payoff and

the payoff you receive.

• The Savage regret method tries to minimize the maximum regret you might

have over a decision.

• The Bayesian approach places a prior distribution over states of nature,

and makes the decision to maximize expected utility.

• The von Neumann-Morgenstern Utility Theorem [11] gives sufficient condi-

tions for a utility function to exist.

18.1 Regret

Suppose I make a particular decision a and then find the true state of nature θ.
Then with that knowledge, I could have perhaps made a better decision b. The
regret I feel is the difference between the best payoff for that state of nature, and

the payoff that I actually received based upon my decision.

Definition 75
The regret of decision a and outcome θ is maxb∈X A(b, θ)− A(a, θ).

For example, suppose the payoff matrix is
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Payoff Matrix

a1 a2 a3
θ1 5 0 2

θ2 5 3 3

θ2 0 4 2

Then for a given decision and outcome, we can find the regret. For instance, if

the original decision was a3 and the state ended up being θ1, we would regret not

picking a1, since that was higher. In fact it was 5−2 = 3 higher, leading to a regret
of 3. We can do this for every decision/state pair to form the regret matrix

Regret Matrix

a1 a2 a3
θ1 0 5 3

θ2 0 2 2

θ2 4 0 2

Therefore, the maximum regret for each decision is

a1 a2 a3
4 5 3

The decision which minimizes the maximum regret for a decision is a3.

Definition 76
The Savage regret decision is

argmin
a∈A

max
θ∈Ω

[
max
b∈X

A(b, θ)− A(a, θ)

]
.

18.2 Using partial information

Remember that the way to encode partial information about the state of nature is

to use a probability distribution. Consider the following payoff matrix.

Study Don’t Study

Final is Hard 8 2

Final is Easy 6 10

Sun explodes 0 12

Laplace’s principle of insufficient reason would say that (1/3, 1/3, 1/3) is the
probability vector for these three states given no information about the three

possible states. Someone who knows anything at all about the solar system just

might have slightly lower than 1/3 chance for the sun exploding.
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The person using Maximin is a pessimist who makes P(worst option) = 1. But
even the worst pessimist would hesitate before putting P(sun exploding) = 1.
Another problem with Maximin is that is fails to have a property called row

linearity. The idea of row linearity is that if you add a constant to any particular

row, it should not affect the optimal decision.

For instance, the old decision was a2 (don’t study). Say we add -3 to first row.

The new table becomes:

Study Don’t Study

Final is Hard 5 -1

Final is Easy 6 10

Sun explodes 0 12

Our new minimum vector is:

S NS

0 -1

The new decision is a1 simply by changing the first row.

18.3 Expected Utility Hypothesis

The expected utility hypothesis goes back to Daniel Bernoulli in 1738, and is an

extension of Laplace’s principle. It does satisfy row linearity. The idea is as follows.

1. Assign a probability to each state indicating the partial information an indi-

vidual has about the truth of the statement (this is called a prior distribution
or a statistical model.)

2. Calculate the expected payoff from each decision.

3. Choose the decision that maximizes expected utility.

Example 30
If there is a 60% chance that the final is hard, 40%− ϵ that it is easy, and ϵ chance
that the Sun explodes

E[payoff|Study] = (0.6)(8) + (0.4− ϵ)(6) + ϵ(0) = 7.2− 6ϵ.

S NS

7.2− 6ϵ 5.2 + 2ϵ

So for small ϵ, the action should be to study.
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Row linearity To see why this has the row linearity property, suppose that we

add a constant C to a particular row. Suppose that row (that state of nature) occurs

with probability pi.
Then the effect of this is to add piC to each of the mean payoffs, regardless of the

decision made. This does not change the max expected payoff decision, because

every decision gets the same constant added to it, so they stay in the same relative

order.

Does this work? In 1947, John von Neumann and Oskar Morgenstern considered

the conditione that were needed to hold before the expected utility hypothesis

could be used to obtain the best decision. They came up with 4 rules that if an

individual made decisions according to these rules, then there must exist a utility

function underlying their decisions. First some definitions.

Definition 77
A utility function is a function that returns a utility value U given the random

state of nature θ ∈ Ω. That is, U : Ω→ R.

Definition 78
A lottery is a probability distribution on outcomes, together with a utility func-

tion.

For instance, suppose Ω = {a, b, c}, and lottery L has

P({a}) = 0.4,P({b}) = P({c}) = 0.3

with

U(a) = 16, U(b) = 20, U(c) = 5.

Then because the state of nature is uncertain, the value of U is a random variable,

and has an expected value. In this case,

EL(U) = 0.4 · 16 + 0.3 · 20 + 0.3 · 5 = 13.90.

A lottery distribution can be represented by a vector p whose entries add up to

1.

Definition 79
Let P consist of the set of vectors in [0, 1]n such that the entries add up to 1. This

is called the probability simplex.
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Definition 80
For lotteries L, M write

• L = M if the actor is indifferent to playing lottery L orM .

• L ≺M if actor prefers lotteryM to L.

Note that having L = M does not mean that the probability vector and utility

functions are the same, just that given a choice between playing the two lotteries,

the actor would be equally happy with either one. Following the usual notation, if

L = M or L ≺M , then write L ⪯M .

Given two lotteries L and M , we can think about flipping a coin that comes

up heads with probability p and tails with probability 1 − p. If the coin comes

up heads, then we play lottery L, otherwise we play lotteryM . This gives us the

convex linear combination of the lotteries.

Definition 81
Given two lotteries L and M , suppose X ∼ Bern(p) (where p ∈ [0, 1]) is inde-
pendent of the state of nature. Let N = pL + (1 − p)M be the lottery where

the agent plays L if X = 1 and plays M if X = 0. Call N the convex linear
combination of L andM .

(Note often the word linear is dropped in practice.)

Definition 82
A set of elements where the convex linear combination of any two elements are

in the set is called convex.

Because of linearity of expectation, the convex combination of two lotteries has

a mean equal to the convex combination of the means.

Fact 31
For lotteries L andM with utility function U , then

(∀p ∈ [0, 1])(EpL+(1−p)M(U) = pEL(U) + (1− p)EM(U)).

Axioms of Utility Theory (vN-M Axioms) Originally, axioms meant things

that were self evident. Today, mathematicians use axiom as a synonym for defi-

nition. However, while the axioms/definition created by von Neumann and Mor-

genstern might not be self-evident, they are also reasonable things to work with.

There are four axioms.

122 271



Mark Huber Stochastic Operations Research

Definition 83
The von Neumann-Morgenstern Axioms are:

1. Completeness For all lotteries L andM , exactly one of the following is

true:

L ≺M,L = M, or M ≺ L.

2. Transitivity If L ⪯M , M ⪯ N , then L ⪯ N .

3. Continuity If L ⪯M ⪯ N , there exists a p ∈ [0, 1] such that

pL+ (1− p)N = M.

4. Independence If L ≺M , then for any lottery N and p ∈ (0, 1],

pL+ (1− p)N ≺ pM + (1− p)N.

Theorem 8 (Von Neumann-Morgenstern Utility Theorem)

A complete and transitive preference relation⪯ on a finite set of lotteries satisfies

continuity and independence if and only if there is a random variable U such

that for all lotteries L andM :

L ≺M ⇔ EL[U ] < EM [U ]

L = M ⇔ EL[U ] = EM [U ].

In other words, if the first two axioms hold, then there is a utility function whose

value allows us to sort all lotteries if and only if the last two axioms hold.

18.4 The shape of the utility curve

The Utility Theorem is very powerful, but it tells us very little about the shape of

the utility curve. It turns out that three particular shapes are very important.

• Straight line

– 1st dollar exactly as valuable as millionth dollar.

– Useful model when money of outcomes small compared to net worth

• Risk Averse (RA)

– Shape concave (convex down)

– Avoids big risks
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– Typical function when outcomes comparable to net worth

• Risk Seeker (RS)

– Shape convex (convex up)

– Millionth dollar worth more than 1st dollar

– Trying to be first to reach a milestone

– Going for the big score

– Monopoly will often behave this way

– Venture capitalists

– “With $100,000, I could open a restaurant!”

In 1979, Kahneman and Tversky designed and ran a series of experiments to see

what the utility curve of participants looked like. It turned out that in fact most

people do not use well defined utility curves in making their decisions. In fact, they

found that they could alter the curve that was implicitly being used by rephrasing

the question in different ways. So while utility maximization is good as a principle,

it should not be taken to represent how real people make decisions in practice.

Problems
18.1 True or false: Regret is the negative of utility.

18.2 True or false: The Savage regret method tries to minimize the maximum

regret possible.
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Chapter 19
Proof of the Utility Theorem

Question of the Day How is the von Neumann-Morgenstern Utility Theorem

proved?

Summary

• Proving the von Neumann-Morgenstern Utility Theorem

Let us start by reminding ourselves what the Utiliy Theorem says:

If a set of lotteries is complete and transitive, then they are continuous and inde-
pendent if and only if there is a utility function that gives preferences.

These first two axioms say the following.

• Complete means that for any two lotteries L andM , one of the following is

true:

L ≺M,L = M,M ≺ L.

• Transitive means that if L ⪯M andM ⪯ N , then L ⪯ N .

The last two axioms then are as follows.

• Continuous means if L ⪯M ⪯ N , there is a p ∈ [0, 1] such that

pL+ (1− p)N = M.

• Independence means that for L ≺M , any lottery N , and p ∈ (0, 1],

pL+ (1− p)N ≺ pM + (1− p)N.

We begin with the easier direction.
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19.1 Proof that Completeness+Transitive+Utility implies

Continuity+Independence

Proof. Suppose L ⪯ M ⪯ N . For the case when L = N then any choice of

p ∈ [0, 1] will do. For the case when L ≺ N , we have EN [U ] > EL[U ], and
EN [U ] ≥ EM [U ]. So let

p =
EN [U ]− EM [U ]

EN [U ]− EL[U ]
.

By the Fundamental Theorem of Probability,

EpL+(1−p)N [U ] = pEL[U ] + (1− p)EN [U ]

= EN [U ]− p(EN [U ]− EL[U ])

= EN [U ]− (EN [U ]− EM [U ])

= EM [U ].

Since their utilites are equal, the player is indifferent to the lotteries. That means

M = pL+ (1− p)N and continuity is satisfied.

To show independence, suppose that L ≺M , so EL[U ] < EM [U ]. Then

EpL+(1−p)N [U ] = pEL[U ] + (1− p)EN [U ]

< pEM [U ] + (1− p)EN [U ]

= EpM+(1−p)N [U ].

19.2 Proof that

Completeness+Transitive+Continuity+Independence

implies Utility

The other direction is more difficult! We begin by proving a weaker form of the

theorem that only works when there is a maximal and minimal lottery.

Fact 32
For any precedence relation on lotteries that is complete, transitive, and con-

tinuous, if there exist lotteries L and M such that for all other lotteries N ,

L ⪯ N ⪯ M , then there is a utility function that respects the precedence

relation.

Proof. Set U(M) = 1 and U(L) = 0. LetN be any lottery. By the continuity axiom

there is a p ∈ [0, 1] such that

pL+ (1− p)M = N.
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Set U(N) = 1− p.
Nowwe show that this choice ofU respects the precedence relation. LetN1 ⪯ N2

be two lotteries. ThenN1 ⪯ N2 ⪯M so by the continuity axiom there is a p ∈ [0, 1]
such that N2 = pN1 + (1− p)M .

As earlier, say that for X ∼ Bern(p), N2 plays N1 if X = 1 and M if X = 0.
However, N1 = p1L + (1− p1)M . So for Y ∼ Bern(p1) say N1 plays L if Y = 1
andM otherwise.

That means that in order to end up playing L, first we have to have X = 1 so
that we play N1, and then we have to have Y = 1 so we play L. Note P(X =
1, Y = 1) = pp1. If the lotteries do not end up playing L then they playM .

By continuity, there exists p2 such that N2 = p2L + (1− p2)M . By the above

argument p2 = pp1. Since p ∈ [0, 1] that makes p1 ≥ p2 and 1− p1 ≤ 1− p2. But
that makes U(N1) ≤ U(N2), and the precedence relation is preserved by the utility

function.

Proof for general lotteries If we have a set of lotteries with either no maximal

or no minimal lottery, then the problem becomes much deeper. We need to use a

result from analysis that for any convex set with a complete, transitive precedence

relation, there exists an affine functionwhose value respects the precedence relation.

To begin, consider when a function is affine.

Definition 84
A function f is affine if for all vectors x and y and λ ∈ [0, 1],

f(λx+ (1− λ)y) = λf(x) + (1− λ)f(y).

Example: f(x) = 3x− 2. Then

f(λx1 + (1− λ)x2) = 3(λx1 + (1− λ)x2)− 2(λ+ (1− λ))

= λ(3x1 − 2) + (1− λ)(3x2 − 2)

= λf(x1) + (1− λ)(x2)

Fact 33
Suppose U is a utility function. Then so is U ′ = aU + b where a, b ∈ R and

a > 0.

Proof. Since a > 0, U ′
is an increasing function of U , so maintains the same

ordering. Suppose

EpL+(1−p)N [U ] = EM [U ].
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Then

EpL+(1−p)N [U
′] = EpL+(1−p)N [aU + b]

= aEpL+(1−p)N [U ] + b

= aEM [U ] + b = EM [aU + b] = EM [U ′]

so continuity is preserved.

It turns out that for transitive and complete precedence relations, there is always

an affine utility function.

Fact 34 (Mixture Space Theorem (Weak form), Herstein and Milnor)

LetΠ be a convex subspace, so (∀x, y ∈ Π)(∀λ ∈ [0, 1])(λx+(1−λ)y ∈ Π). Let
⪯ be a preference relation on Π that is transitive and complete. If the preference

relation ⪯ on Π is independent and continuous then there exists an affine utility

representation V : Π→ R of ⪯.
Moreover, if V : Π→ R is an affine representation of⪯, then V ′ : X → R is an

affine representation of ⪯ iff there exist a > 0 and b ∈ R such that V ′ = aV + b.

The proof is beyond the scope of this course. Note that this theorem says that

there must be an affine representation, not that every utility is affine.

Affine for functions was defined to convex combinations of two vectors, of course

by induction that can be extended to any finite number.

Fact 35
Suppose f is affine and p1, . . . , pn add up to 1. Then for x1, . . . , xn,

f(p1x1 + · · ·+ pnxn) =
n∑

i=1

pif(xi).

Proof. When n = 2, this is just the definition of affine! So use induction on n.
Base Case: n = 1, this gives a tautology.
Induction hypothesis: assume true for n, consider n+ 1. Let λ = p1 + · · ·+ pn

and y = (p1x1 + · · ·+ pnxn)/λ. Then

f(λy + (1− λ)xn+1 = λf(y) + (1− λ)xn+1 (affine)

= λ
n∑

i=1

pi
λ
xi + (1− λ)xn+1 (induction)

=
n+1∑
i=1

pixi,

which completes the induction.
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Now we are ready to prove that the continuity and independent axioms imply

the existence of a utility function.

Proof. The proof basically collects the facts that we have gathered.

• The set of all lotteries Π is an example of a convex set, and so by the Mixture

Space Theorem, there is an affine function V that represents the preference

relation ⪯ over lotteries. Our goal is to use V (which is a function of the

lottery) to build a random variable U (which is a function of the outcome.)

• For outcome ω ∈ Ω, theDirac delta lottery is the lottery δ(ω)where P(ω) = 1.
In other words, in the δ(ω) lottery, ω is the outcome with probability 1.

• Our random variable is then U(ω) = V (δ(ω)).

• Let L be any lottery in Π. It is a mixture of Dirac delta lotteries:

L =
∑
ω

L(ω)δ(ω).

where

∑
ω L(ω) = PL(Ω) = 1.

• Since V is affine,

V (L) = U

(∑
ω

L(ω)δ(ω)

)
=
∑
ω

L(ω)V (δ(ω)) = EL(U).

• Hence U is a utility representation since V (L) = EL(U) respects the prefer-
ence relation.

Problems
19.1 If u(x) =

√
x and the payoff isX ∼ Unif([0, 1]), what is the average utility?

19.2 If u(x) = x2
and the payoff is is X ∼ Unif([0, 2]), what is the average

utility?

19.3 True or false: for u a utility function, 3u+ 6 gives the same preferences as

u.

19.4 True or false: for u a utility function, −u+ 10 gives the same preferences

as u.
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19.5 Suppose f is an affine function with f((1, 1)) = (4, 2), f((1, 2)) = (5, 3).

a) Using the usual rules for scaling and adding vectors in R2
, what does

0.4(1, 1) + 0.6(1, 2) equal?

b) Find f((1, 1.6)).

19.6 Let g be an affine function with

g((0, 0)) = (3, 1)

g((2, 4)) = (−1, 2).

Find g((4, 8)).
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Chapter 20
Decision Trees

Question of the Day Archytas Electronics must decide whether to build a

new tablet. The product is expected to have a demand that is either high, low

or medium. Since the money involved is small relative to the earnings of the

company, utility is just taken to be money here. If the tablet is not built, the

company loses nothing. But if it is built, then the expected payoff depends on

whether demand is Good, Moderate, or Bad.

Demand

Good Moderate Bad

Probability 15% 60% 25%

Payoff $1 500 000 $600 000 -$700 000

Summary

• A decision tree can be a useful tool for making decisions withmany branches

and outcomes.

Decision Trees Often, decisions involve a series of simpler decision. A decision
tree can help keep track of the different possibilities.
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Definition 85
A rooted directed tree is a directed graph where there is a unique node called

the root, and there is a unique set of nodes connecting the root to any node in

the tree. There are four types of nodes.

• The root node is where the decision starts.

• Nodes with no outgoing arcs are leaves. These are labeled with a utility

value.

• Nodes other than the root and leaves are either decision nodes or chance
nodes. Outgoing arcs from decision nodes are labels with actions. Outgo-

ing arcs from chance nodes are labeled with probabilities.

Definition 86
The optimal value (often abbreviated to just value) of a tree is the maximum

expected value of the tree assuming optimal decision making.

A common way to draw decision trees uses squares to draw decision nodes and

circles to draw chance nodes. Since all arcs are oriented away from the root, we

also typically do not draw the direction of the arcs.
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Example 31 (Question of the Day)

Archytas Electronics must decide whether to build a new tablet. The product is

expected to have a demand that is either high, low or medium. Since the money

involved is small relative to the earnings of the company, utility is just taken to

be money here. The decision tree looks like:

Launch

Tablet

Don’t Launch

Tablet

$0

Good 15%

$1 500 000

Mod 60%

$600 000

Bad 25%

-$700 000

= decision

= random outcome

Should the tablet be launched?

Answer There is really only one decision to make, right at the beginning.

If Archytas launches the product, the expected payoff is:

(15%)(1.5 · 106) + (60%)(0.6 · 106) + (25%)(−0.7 · 106)
= 106(.225 + .36− 0.175)

= (0.410)106 > 0

So the maximum expected utility decision is to launch the product!

20.1 Analyzing decision trees

In the Question of the Day, we just evaluated the consequences of the first decision,

and that led us to the end point. If there are multiple decisions and chance nodes,

this becomes too complex. Instead, we start at the end point and work backwards.

Consider a chance node whose outgoing arcs all lead to leaves with utility

outcomes. Then if we reach that chance node, the resulting expected utility is just

the sum of the probabilities on each branch times the utility value for the leaf it

ends up at.
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So effectively, we can replace the chance node with the expected value of the

node and the overall tree will retain the same value as before. We have simplified

the tree, but the optimal value is the same. This gives the following procedure for

analyzing decision trees.

Find the optimal value of a decision tree

• While there are internal nodes (nodes that are either chance nodes or decision

nodes) do the following.

– Pick an internal node whose outgoing edges are all leaves.

∗ If this node is a chance node, replace the subtree of the node and

its leaves with a leaf node whose utility value is the sum of the

outgoing arcs’ probability times the leaves’ utility value.

∗ If this node is a decision node, replace the subtree of the node and

its leaves with a leaf node whose utility value is the maximum of

its leaves’ utility values.

A sample analysis Suppose the decision tree looks like:

60%
4

40%

2

20%

70%

3

10%

-1

3

50%

2

50%

0

Replace random outcomes in leaves with expectation:

(50%)(2) + (50%)(0) = 1

(60%)(4) + (40%)(2) = 3.2
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3.2

20%

70%

3

10%

-1

3

1

Now consider the decision in the upper right: each outcome of the decision is a

number, take the decision that maximizes the value. In this case, we take the up

branch for 3 utility.

3.2

20%
3

70%

3

10%

-1

Again trim by finding expectation:

(20%)(3) + (70%)(3) + (10%)(−1) = 2.6
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2.6

3.2

Now there remains only one decision node. Take the down branch to maximize

the utility among the leaves.

Note that no matter how large, at each step we are removing a chance or decision

node. Hence any size tree can be simplified to a root and leaf using this approach!

Problems
20.1 A business is testing out a new wind turbine design. It would take

$10 000 000 to develop the design fully. If demand for green energy is good

(20%) the business stands to make 30 million dollars, but if it is medium

(50%) they will only make 12 million, and if it is bad (30%), they will only

make 2 million.

a) Draw the decision tree for this problem.

b) What decision should the business make?

20.2 A government agency is deciding whether to begin an estuary project. The

project will cost about three hundred thousand dollars to complete. If severe

flooding occurs (which will happen with probability 20%), this will save

about one million dollars, but otherwise, it will do nothing.

a) Draw the decision tree for this process.

b) Should the agency undertake the project?
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Chapter 21
Psychology of decision making

Question of the Day What are the common decision making mistakes?

Summary There are many ways people fail to be rational in decision making.

Some of the most common problems are:

• Loss aversion (the Zero illusion)

• Allais Paradox

• Gambler’s Fallacy

• Anchoring

• Sunk cost Fallacy

So far we have developedmathematical models about themathematics of decision

making, but that does not tell the whole story. Unfortunately, experiments have

shown that people are not always rational when it comes to making choices.

For instance, consider the following. You plan to see a play that costs $40, and

find yourself in one of two situations.

• You bought the ticket to the play ahead of time, but when you get to the

theater, you find that you have lost the ticket. You do have enough money in

your wallet to buy a ticket.

• You did not buy the ticket ahead of time, planning to get it when you arrive

at the theater. However, when you open your wallet, you find $40 is missing.

You do still have enough money in your wallet to buy a ticket.

The question is: in these scenarios, do you buy the ticket? It turns out [7] that

people in scenario 1 where the ticket was lost are much less likely than people in

scenario 2 where the money was lost to buy a ticket.
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But according to utility theory, that should not happen! In either scenario, you

find yourself at the theater without a ticket and without $40. It should not matter

how you lost the $40, whether directly, or by buying a ticket and then losing the

ticket. Still, it does seem to matter to people in making decisions.

In this chapter we will consider some of the common ways people deviate from

expected utility maximization.

21.1 Defaults

Making a decision is hard work, and so anything that helps us to avoid the work of

making a decision will be justified by our own brains.

Johnson and Goldstein [6] looked at data about participation in organ donation

programs, as recorded on driver’s licenses. They found the following participation

rates among European countries, presented in Figure 21.1.

Figure 21.1: Drawn from [6].

There is a sharp gap between the four countries on the left and the seven on the

right. But there seems to be no pattern, either socially or geographically that could

explain the difference.

The difference was that in the countries on the left, people had to check a box to

opt-in to organ donation. In the countries on the right, people had to check a box

to opt-out to organ donation. The default decision was overwhelmingly the reason

for difference.

Why might that be? One theory is that this is a big decision, and big decisions

are hard. Much easier is to simply use the default position. When we evaluate

possibilities, we must always be careful to understand whether we truly believe

the status quo to be the right decision, or are we simply trying to avoid the difficult

problem of making a decision.
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21.2 Loss Aversion (Zero Illusion)

Loss aversion is the idea that decision makers tend to avoid losses more than enjoy

gains. For instance, if I offer two outcomes, a gain of $10 or a loss of $10, the loss is

felt as being worse than the gain. The utility curve looks like this.

There is a sharp change in the slope of the utility curve at zero (formally a

discontinuity in the derivative.) Therefore this phenomenon is also sometimes

called the zero illusion.
This manifests itself in several ways.

• When dealing with risk, a loss averse investor has a goal of at least breaking

even.

• Debt is unduly viewed as bad, and something to be avoided.

21.3 Allais paradox

Maurice Allais [1] constructed experiments designed to test if expected utility

maximization is the way people make decisions, and ran into a bigger problem

than loss aversion. In his findings, there was no utility function at all that would

explain the results!

In his study, Allais asked participants to consider two lotteries.

Lottery 1A 100% win $1 million

Lottery 1B 89% win $1 million, 1% win nothing, 10% win $5 million

Given the choice, most people prefer Lottery 1A. Now change the lotteries.

Lottery 2A 89% win nothing, 11% win $1 million

Lottery 2B 90% win nothing, 10% win $5 million

In the same study, they found that people prefer Lottery 2B. The problem is that

this is inconsistent with utility maximization!
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Why is this inconsistent?

• Consider a function U .

• Then 1B ≺ 1A implies E1B[U ] < E1A[U ].

E1A[U ] = U(1) > 0.89U(1) + 0.01U(0) + 0.1U(5) = E1B[U ].

• Now let’s play with E2A < E2B[U ]:

E2A[U ] = 0.89U(0) + 0.11U(1) < 0.9U(0) + 0.1U(5) = E2B[U ]

• Add 0.89U(1)− 0.89U(0) to both sides:

U(1) < 0.89U(1) + 0.01U(0) + 0.1U(5)

21.4 Gambler’s fallacy

Suppose we flip a fair coin 40 times. If it comes up heads 40 times in a row, then

the Gambler’s fallacy is to believe that we are due for a tail. In other words, those

falling for this fallacy will think that the probability of a tail coming next will be

greater than 50%.

If fact, the situation is worse than this: if we start with a uniform prior on

the probability of heads, then after seeing heads 40 times in a row, our posterior

probability will have moved most of the probability of heads to be close to 1.

Repeated instances of an unusual occurrence should cause us to rethink our

probabilities for the event upward, not downward!

21.5 Anchoring

The idea of anchoring is that hearing numbers that are unrelated to the problem at

hand can influence people towards that number. This problem was also formed the

basis of experiments by Tvesky and Kahneman.

Tvesky & Kahneman 1982 Experiment In their experiment, they asked par-

ticipants what their best guess was to the percentage of African countries that are

members of the United Nations. However, before they asked the question, they

rolled a random number X uniform from 1 up to 100, and told this number to the

participants.

The participants knew that the number was random, and yet they still gave

guesses that were closer to the number they were given. This random number X
served as an anchor for their predications.
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21.6 Sunk Cost Fallacy

In a pure utility decision making framework, people make decisions based on the

future effects of a project. However, it is not uncommon for decisions to be made

based on past information as well.

For instance, suppose that a company starts a project by investing X dollars.

After learning of cost overruns, at the current time the project needs Y dollars to

finish. Should the project be finished?

If the decision makers are trying to maximize expected utility, they should only

consider Y and the utility of the outcomes in their decision. The value ofX should

have no bearing whatsoever on the result.

However, in practice, the amount of money already spent on a project can sharply

influence the chance of continuing. Examples where this is often seen include

• Military conflicts,

• large scale real estate projects, and

• choice of undergraduate major.

21.7 What can we do to avoid these fallacies?

Themost important thing is to be aware of the various fallacies that prevent rational

decision making.

• Try to be explicit about your assumptions in decision making. What are

your prior beliefs about probabilities? What are your beliefs about utility of

outcomes?

• At this point you can decide whether you need more information to make

an informed decision!

You should also be aware that very smart people have succumbed to these

fallacies. Being intelligent does not bring immunity! Some examples.

• Newton lost his fortune in the South Sea Tulip Bubble.

• D’Alembert (Wave Equation) believed the Gambler’s fallacy to be true.

• Leibniz thought 12 and 11 were equally likely on the sum of two dice.

Problems
21.1 A survey question reads
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Over 80% of U.K. members surveyed favored greater government expansion.
What percentage of U.K. voters do you believe also favored expansion?

This question is an example of what type of problem in psychological

decision making?

21.2 Consider a lottery L1 that gives $10 with probability 1/2, and costs -$10

otherwise. A second lottery L2 is always worth $0. If the person prefers to

play L2 to L1, show that this is inconsistent with a utility function of the

form U(m) = am+ b wherem is the monetary payoff and a > 0.
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Chapter 22
Expected value of perfect information

Question of the Day Suppose that the economy is expected to be hot, neutral,

or cold over the next year. A investor is considering investing either in one of

two stocks, or the money market. The payoff matrix is:

Stock 1 Stock 2 MM

hot 2000 900 600

neutral 200 300 600

cold -600 -200 600

Given a prob vector for the market of (40%, 30%, 30%), what is the expected
value of perfect information to see the future?

Summary

• The Expected value of perfect information is the difference between the

optimal value of a decision tree where a chance node is replaced with its true

value and the optimal value of the decision tree.

Suppose that I can pay $2 to play a game where I roll a fair single sided die, and

receive a number of dollars equal to the roll on the die. Assuming utility equals

payoff, then since the game pays $3.50 on average, the average utility from deciding

to play the game is 3.5− 2 = 1.5.
Now suppose the person running the game is willing to show me the die before I

have to decide whether or not to pay my $2. How much should that information be

worth? Well, if the die roll is greater than $2, then I would still make the decision

to pay the money and play the game. If the die roll is 1 or 2, then I would make

the decision not to play and save my money. In this case, I earn $0. Therefore, on

average, each game is worth:

(1/6)(0)+(1/6)(0)+(1/6)(1)+(1/6)(2)+(1/6)(3)+(1/6)(4) = 10/6 = $1.666 . . .
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So without the information I earn on average $1.5, with the information I earn on

average $1.6666. . . , so the value of the information is (on average)

10/6− 3/2 = 1/6 = 0.1666 . . . .

We call this amount the expected value of perfect information, or EVPI for short.
More generally, we call the mean amount of money that we can make with

certain information minus the mean amount of money that we can make without

the information the expected value of perfect information.

Definition 87
Let W (I) be the utility gained by making an optimal decision given the pres-

ence of random outcomes encoded in I . Then the expected value of perfect
information is the difference between the expected optimal value given the

information, and the optimal value without. That is,

EV PI = E
[
max
L(I)

EL(I)(W (I) | I)
]
−max

M
EM(W (I)).

To find EVPI

1. Find mean utility of decision with no info.

2. Find mean utility of decision with info.

3. Subtract 1 from 2

Question of the day First we need to find the mean utility without knowledge

of the future. There are three investments, each of which have a different expected

utility.

E[U1] = 2000(0.4) + 200(0.3)− 600(0.3) = 680

E[U2] = 900(0.4) + 300(0.3)− 200(0.3) = 390

E[U3] = 600.

Therefore, with no information, stock 1 is the decision to make that maximizes

expected utility.

On the other hand, let I ∈ {hot,neutral,cold} tell us the exact state of the market.

There are several options.

• If I = hot, we would choose stock 1 to gain 2000. That means

W (hot) = 2000.
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• Similarly,

W (neutral) = 600

because when the market is neutral our best choice is to invest in the money

market.

• Last,

W (cold) = 600,

because our best option under these market conditions is also to pick the

money market.

Given the probabilities for each of these three outcomes, we have

E[W (I)] = (0.4)(2000) + (0.3)(600) + (0.3)(600) = 1160.

That makes the information worth

EVPI = E[W (I)]− E[U ] = 1160− 680 = 480 .

What does this mean? EVPI measures the expected value of reducing uncer-

tainty. In this problem, if a fortune teller could tell you what the market was going

to do, you should be willing to pay up to 480 to learn the answer. The EVPI depends

on what the information is, and gives a way of measuring the importantance of

various pieces of information.

22.1 EVPI for continuous information

In the question of the day, the information was discrete, but the same idea works

just as well for information contained in a continuous setting.

Example Archytas Electronics models demand for their new USB converter

in the following way. First, the average consumer demand µ is taken to have

distribution Gamma(10, 0.01). Once µ is chosen, actual consumer demand is

modeled as Pois(µ). So if D is consumer demand:

µ ∼ Gamma(10, 0.01)

[D|µ] ∼ Pois(µ).

Now it costs around $1800 to change the setting on the factory floor to make the

new model. Once the change has been made, the factory will make $2 per unit sold.

So if we decide to make the new product, the utility will be 2D − 1800.

1. Given the uncertainly about µ, should we make the product?
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2. What is the EVPI to know the value of µ?

This type of model where one parameter is chosen randomly and then another

is chosen based on the first is called a hierarchical model.
So how did we get the parameters of 10 and 0.01 for µ in the first place? Presum-

ably these came from talking to experts and getting information from products

introduced earlier. We’ll talk more about this later on.

In order to solve this problem, we’ll need to understand how conditioning an

expected value interact. The most important thing to know is the Fundamental

Theorem of Probability.

Theorem 9 (Fundamental Theorem of Probability)

For random variables A and B where A, B and [A|B] all have finite mean,

E[E[A|B]] = E[A].

Consider using this to find E[D]. We do not know the distribution of D, and

in fact it is very hard to write down in a hierarchical model. But, we don’t need

to know the distribution of D in order to find its expected value! We know that

E[D|µ] = µ because the mean of a Poisson distributed random variable equals its

parameter.

Using the FTP, we can take the expected value again to get rid of the conditioning,

giving

E[D] = E[E[D|µ]] = E[µ] = 1000.

Using this to find the expected utility without information gives:

E[2D − 1800] = E[E[2D|µ]]− 1800

= E[2µ]− 1800 = 2 · 1000− 1800 = 200.

So without any information, we should make the product!

Now consider how much information about µ is worth. If we knew µ exactly,

then we could decide more effectively whether or not to make the product. The

expected utility conditioned on µ is

E[2D − 1800|µ] = 2µ− 1800.

If this value is nonnegative, we decide to make the product, otherwise we do not

make the product. Hence

W (D) = (2D − 1800)I(2D − 1800 ≥ 0) = (2D − 1800)I(D ≥ 900).

The easiest way to estimate E[W (D)] is to use Monte Carlo simulation The idea

is to generate various values of D and then take the mean to get an estimate.
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This can be done in R with the rgamma command to generate a random gamma

distributed random variable, and the rpois command to generate a random

Poisson distribution random variable.

w <- function(n = 1) {
mu <- rgamma(n, shape = 10, rate = 0.01)
d <- rpois(n, mu)
return((2*d - 1800)*(d > 900))

}

Next to generate several values and report.

set.seed(123456)
n <- 10^8
res <- w(n)
mean(res)

## [1] 355.7944

sd(res) / sqrt(n)

## [1] 0.0479123

Notice that the estimate of the standard deviation of our result is the standard

standard deviation estimate divided by the square root of the number of trials we

made. To see why, recall that when we add independent random variables, their

standard deviations are added in quadrature. This means

SD(X1 + · · ·+Xn) =
√

SD(X1)2 + · · ·+ SD(Xn).

Now, the sample average estimate looks like

µ̂ =
X1 + · · ·+Xn

n
.

Then

SD(µ̂) =
1

n
SD(X1 + · · ·+Xn) =

√
n SD(X1)2

n
=

SD(X1)√
n

.

Therefore, the EVPI for knowing µ is approximately

355.7944 . . .− 200 = 155.8 . . . .
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22.2 Eliciting priors in hierarchical models

So how did we decide on our prior distribution µ ∼ Gamma(10, 0.01) earlier? In
our case it was given by the problem, but in practice we tend to get these types of

priors from expert knowledge. Once we have determined the family of the prior

(Gamma), we could ask the experts questions like: What are average sales going to

be for this product?

A deeper question is to ask: What is a value k such that 50% of time sales are

within k of average?

This second question is asking about quantiles of the random variable. That is

because it is typically easier for most people to understand quantiles rather than

the relatively abstract notion of standard deviation.

Suppose our expert answered 1000 and k = 215. We use a Gamma distribution

because we want demand to always be positive. Then the goal is to find parameters

(α, β) such that these constraints are met. The expected value of such a random

variable is α/β, so β = α/1000.
So we want to find α values such that the probability that X ∼

Gamma(α, α/1000) satisfies P(X ∈ [785, 1215]) = 0.5. In R, the command to

find this probability is

pgamma(1215,alpha,alpha/1000)-pgamma(785,alpha,alpha/1000)

If we put in alpha <- 20we get 0.6674633, and alpha <- 5 gives 0.368343.

Using the bisection method allows us to narrow in to get α = 9.75019 as the best
answer.

Of course, since everything is approximate here, using α = 10 will not give

results much different.

Problems
22.1 An investor believes there is a 30% chance of tariffs being enacted on

aluminum soon. If the tariffs are put in place, then purchasing stock in an

aluminum mining company will result in a $2 000 000 profit. if the tariffs

are not put in place, then the investor will lose $500 000.

a) Draw the decision tree for this problem.

b) Should the investor invest?

c) What is the EVPI for I = I(tariffs are enacted)?

22.2 An NGO is trying to decide if it should expend resources to apply for a

grant from one program (call this strategy G1), another program (G2), or

both (G12). The results will depend on the availability of funding, which

can be described as low or high.
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The payoff matrix looks as follows:

G1 G2 G12

high 3 5 6

low 3 0 1

The NGO believes the chance of low funding is 60%, while that of high

funding is 40%.

a) Draw a decision tree for this problem.

b) What is the optimal decision assuming the expected utility hypothesis?

c) What is the expected value of perfect information for the information

about the state of funding?
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Chapter 23
Framing and a two-envelope problem

Question of the Day Suppose two envelopes contains 2 different positive

amounts of money. You are allowed to look inside one envelope, then either

keep it or switch to the other. Is there a way to choose the envelope with more

money more than 1/2 of the time?

Summary

• Framing phrases a decision either as a gain or loss to change the preferred

outcomes.

• Two envelope problems deal with random variables with only two values,

and are used to illustrate various paradoxes.

23.1 Framing

Framing extends the problem of loss aversion by phrasing a decision either in terms

of gain or terms of loss. Unfortunately, this can bend in either direction.

• People tend to avoid risk when the outcomes are good.

– “A bird in the hand is worth two in the bush”

• People embrace risk when outcomes bad

– “He who hesitates is lost”

– “In for a penny, in for a pound”

The same question can often be presented in two different ways that elicit

different answers. A choice that emphasizes a positive result can lead to risk

avoiding behavior, but becomes risk seeking when negative frame is presented.
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Tvesky & Kahneman 1981 Experiment They asked two versions of the same

question where people were asked to choose between Treatment A or Treatment B

for a disease that a group of 600 people had.

1. Positively framed question. Treatment A: “Saves 200 lives”, Treatment B: “A

33% chance of saving all 600 people, 66% possibility of saving no one.”

2. Negatively framed question. Treatment A: “400 people will die”, Treatment

B: “A 33% chance that no people die, 66% probability that all 600 will die.”

In the positive frame, 72% of participants chose Treatment A, while in the negative

frame, only 22% did so. Of course, the outcomes are exactly the same, only how

they are presented is different.

So how do we solve framing? The simplest approach is to present both the

positive and negative frame simultaneously.

Treatment A: Saves 200 lives, but 400 will die. Treatment B: A 33% chance that
everyone lives and no one dies, but a 66% probability that no one lives and everyone
dies.

This effect is well known and used in marketing to try to convince consumers to

make certain decisions. For instance, we have the following strategies.

• Two week trial with a money back guarantee.

– This is a good outcome so the money back guarantee manages the risk

for the customer.

• Discount for cash: rarely do policies state they have a surcharge for using

credit.

Frames and happiness The way outcomes are phrased can also affect regret

(or its opposite, happiness.)

• Movie Theater promotion #1:

– June wins $100 for being the millionth customer.

• Movie Theater promotion #2:

– Betty wins $10 000 for being the millionth customer

– Mike wins $1 000 for being 1, 000, 001 customer

So which customer should be happier with the outcome, June or Mike? In

practice, it would typically be June, although objectively Mike should be happier

with more money.
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Other approaches to minimizing irrational behavior Here are some more

ways to minimizing irrational behavior based on framing.

• In surveys, present the questions in a random order.

• Make the target aware of biases.

• Use feedback from the results of model.

• Redundant questioning: ask the same question using multiple frames.

• Do not let humans decide which they prefer. Instead, elicit probabilities, try

to determine utilities, and then use an automated method to find the best

decision. (This is why linear regression routinely outperforms experts in

decision making.)

23.2 Two envelope problems

There are a number of simple problems involving decisions with unknown amounts

of money in each of two envelopes, that illustrate some of the difficulties in building

a consistent philosophy of decision making.

Switch or no switch? Wewill start with a simple version. Suppose two envelopes

contain different amounts of money, x and y. You do not know what x or y is, but

you do know that y > x.
Here’s how the game is played: you are allowed to look in one envelope and see

the amount of money that is inside. After looking in the envelope, you are allowed

to switch to the other envelope or stay with your existing envelope. What should

you do?

Surprisingly, there is a strategy that guarantees (even though you don’t know

either x or y ahead of time) that you have a better than 50% chance of picking the

envelope with the higher amount of money.

Procedure Start with a probability density f that is positive over [0,∞). For
instance, the absolute value of a normal or Cauchy random variable will accomplish

this.

1. Look in an envelope chosen uniformly at random, call result A.

2. Draw X ∼ f .

3. If X ≤ A, keep the envelope with A, otherwise switch.

152 271



Mark Huber Stochastic Operations Research

What is the chance that you end up with the good envelope? Suppose that

X ≤ x < y. Then we do not switch no matter which envelope we get, so we have

a 1/2 chance of getting the good envelope to start with.

Similarly, if x < y < X , then we always switch, so our chance of winning is the

chance that we started with the wrong envelope, so again 1/2.
Ah, but if x < X ≤ y, then if we get the envelope with x we switch, and if

we get the envelope with y we don’t switch, so we always win, no matter what

envelope we started with!

Hence

P(win) =
1

2
P(X ∈ (−∞, x]) + P(X ∈ (x, y]) +

1

2
P(X ∈ (y,∞))

and since

P(X ∈ (−∞, x])) + P(X ∈ (x, y]) + P(X ∈ (y,−∞)) = 1,

this gives

P(win) =
1

2
+

1

2
P(X ∈ (x, y]).

This last term is positive since X has positive density over R.

Two envelope paradox Now suppose that you know that one envelope contains

exactly twice as much as the second envelope. In other words, y = 2x, so the

envelopes contain x and 2x amount of money.

Now consider the following expectation maximization method.

• Say you look inside and see $1000

• Then you know the other envelope has $500 or $2 000

• Since each are equally likely, if you pick the other envelope, you expect to

change the amount of money you have by

E(switch) = (1/2)500 + (1/2)2000 = 1500.

• So you should always switch.

Wait a minute, though that cannot be correct. That argument works no matter

what amount you saw in the envelope! So we can switch without even seeing

what’s in the envelope!

But earlier we showed that we can get at least a 50% chance of getting the higher

amount by using extra randomness.
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Solving the paradox Interestingly, there is no one accepted solution to this

problem. Philosophers have written books on it.

That being said, here is a simple way of thinking about the problem. The original

amount of money in the two envelopes areX and 2X . HereX is a random variable

that has an unknown distribution.

If you chose your initial envelope randomly, then the amount of money in the

envelope is [N |X] ∼ Unif({X, 2X}). If you switch, you obtain moneyM . Because

initially you picked the envelope at random, [M |X] ∼ Unif({X, 2X}) as well, and
there is no paradox as

E[N ] = E[M ] = E[E[N |X]] = (3/2)E[X]

and you are indifferent to switching.

The mistake in the paradox was in saying that given your choice of N , the

envelopes where equally likely to contain {N/2, N} as {N, 2N}. But this ignores
the fact that whomever set up the envelopes had to put the money in first, and
so it is {X, 2X} no matter which envelope you pick. In other words, your choice

of envelope cannot magically change the set of values of the money inside of the

envelopes!

A more sophisticated resolution considers that the person who set up the en-

velopes did not choose between (500, 1000) and (1000, 2000)with equal probability,
and that is where the error in reasoning in the paradox lies.

In this case, we need a model for how the original x was chosen, and once again

(as with the maximum expected utility), we introduce the notion of a Bayesian

prior on the choice of x.
Consider the following example. Suppose that the smaller amount of money was

chosen as a geometric random variable with mean 3. That is, say X ∼ Geo(1/3) if

(∀i ∈ {1, 2, 3, . . .})(P(X = i) = (2/3)i−1(1/3)).

Once we look in the first envelope and see N dollars, that is data, and we need

to update our probabilities for X given N . In other words, we want to know the

distribution [X|N ], but our statistical model only gives us [N |X] (P(N = X|X) =
P(N = 2X|X) = 1/2).
To use [X] (the prior) and [N |X] (the statistical model) to get [X|N ] (the poste-

rior), we use Bayes’ Rule.

Theorem 10 (Bayes’ Theorem)

Let A and B be events with positive probability. Then

P(A|B) =
P(A)P(B|A)

P(B)
.
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• Let N be amount seen, X be amount in smaller envelope

• Suppose that the data isN = 4. What is the new distribtuion ofX given this

data?

First, we know that X = 2 or X = 8, since N ∈ {X, 2X}. Next,

P(X = 2|N = 4) =
P(N = 4|X = 2)P(X = 2)

P(N = 4)

=
P(N = 4|X = 2)P(X = 2)

P(N = 4|X = 2)P(X = 2) + P(N = 4|X = 4)P(X = 4)

=
(1/2)(2/3)(1/3)

(1/2)(2/3)(1/3) + (1/2)(2/3)3(1/3)

= 1/[1 + (2/3)2] = 9/13.

So the expected benefit of switching is

9

13
· (−2) + 4

13
(4) = −4/13 < 0,

so don’t switch!

Problems
23.1 Suppose that X ∼ Unif({1, 2, 3, 4}), and two envelopes are presented, one

with X dollars, and one with 2X dollars. You are allowed to select one

envelope, look inside, and then switch if you’d like.

You decide to randomly choose a continuous uniform W over [0, 10]. If the
amount in the envelope is smaller than W , swtich, otherwise keep your

envelope. What is the chance that you end with the larger dollar amount?

23.2 Continuing the last problem. Suppose you now know that X ∼
Unif({1, 2, 3, 4}. You look inside the envelope and see 4 dollars. To maxi-

mize your expected dollars, should you switch?
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Chapter 24
Creating utility functions to test beliefs

Question of the Day Consider the multiple choice question:

What is the capital of Louisiana?

a) New Orleans

b) Bon Temps

c) Baton Rouge

d) Lousiannaville

How can your true beliefs about the correct answer be elicited?

Summary

• There exists a utility function such that the optimal strategy is to write down

your true probability beliefs.

So we have seen how to calculuate expected utility and EVPI if we have a prior

on the possible outcomes. But how do we get that prior in the first place? One

method is to try to elicit the beliefs about probabilities from experts in the field.

24.1 Using share prices/betting odds to estimate

probabilities

Suppose I offer you a financial instrument with the following properties. If event

A occurs (for instance, the Los Angeles Dodgers win the World Series this year),

then the stock will be worth $100. If they don’t then the stock is worthless. How

much would you be willing to pay for the stock?

If $100 is small enough that you are risk neutral to this amount, then you would

be willing to pay 100p, where p is your belief about the probabiltiy that event A
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occurs. If the stock was being sold for value less than 100p, you would want to buy

the stock, and if you could sell the stock for more than 100p, you would.

This idea is the basis for a prediction market, which puts this idea into action

by allowing the buying and trading of stocks for amounts between 0 and 100%.

By allowing anyone to buy or sell the stock, a prediction market is an example of

crowdsourcing probabilities.

The downside to prediction markets is that they are subject to the same irrational

behavior as other markets, including bubbles and crashes. If someone “invests” in

A not because they believe the probability warrants it, but because the price of

stock A is on the rise, that defeats the purpose.

24.2 Weighted answers for multiple choice questions

That works for finding the probability of A or the complement of A, but what
if there are more than two outcomes? Such a situation arises for tests that are

multiple choice.

Definition 88
An exam question ismultiple choice if the set of possible answers is a finite set.

For a given multiple choice test question, letX denote the true answer. Of course

X is a random variable that measures how much information we have about each

possible answer.

Next, suppose that instead of just marking one answer correct, we allow students

to write positive numbers that add to 1 when answering a multiple choice question.

Then suppose in our answer we writem(i) for the weight we are assigning answer
i.

Example 32
If a multiple choice question has choices a, b, c, and d, we might write

m1(a) = 0.2,m1(b) = 0.3,m1(c) = 0.25,m1(d) = 0.25.

If the test taker is sure that the answer is c, then they might put all of their

weight on c:

m2(a) = 0,m2(b) = 0,m2(c) = 1,m2(d) = 0.

If they thought the right answer was either c or d and they were not sure, they

might write:

m3(a) = 0,m3(b) = 0,m3(c) = 0.5,m3(d) = 0.5.
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Consider a user has a probability distribution for X in mind given by the vector

p. That is,
P(X = i) = p(i).

Now think about what the test taker might write down for their answer based

on various utility functions.

24.3 The usual grading scheme

The usual grading scheme for a multiple choice test is to give 1 point if the answer

is correct, and 0 otherwise. A reasonable extension of this to the system where

someone writes down a vector that adds to 1 is to give the student whatever they

put down on the answer that turns out to be true. This can be encoded as:

U(m) = m(X).

Example 33
Continuing the last example, suppose that X = 4. Then

U(m1) = m1(X) = m1(4) = 0.25.

U(m2) = m2(X) = m2(4) = 0.

U(m3) = m3(X) = m3(4) = 0.5.

Of course we rarely know for sure what the true answer is, but we might have a

probabilistic model. Once we have the model, then we can find the expected utility
given a particular choice ofm.

Example 34
Continuing our example, suppose P(X = i) = p(i) is given by

p(1) = 0.5, p(2) = 0.2, p(3) = 0.15, p(4) = 0.15.

Then

E[U(m1)] = E[m1(X)]

= (0.5)(0.2) + (0.2)(0.3) + (0.15)(0.25) + (0.15)(0.25) = 0.235,

E[U(m2)] = E[m2(X)] = (1)(0.15) = 0.15,

E[U(m3)] = E[m3(X)] = (0.5)(0.15) + (0.5)(0.15) = 0.15.

So if the choice ofmwas between these three possibilities, with this probability

vector m1 yields the highest expected utility.
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Ism1 the best choice for this problem? To answer we need to maximize E[U(m)],
and that is done by placing all our weight on the answer with the largest value of

p(2). In this case

m4(1) = 0, m4(2) = 2, m4(3) = 0, m4(4) = 0,

yields E[U(m4)] = 0.3, and that is the best we can do since

E[m(X)] =
3∑

i=1

p(i)m(i) ≤
3∑

i=1

[
max

i
p(i)

]
m(i)

=
[
max

i
p(i)

] 3∑
i=1

p(i) =
[
max

i
p(i)

]
.

Incidentally, the value

B = argmax
i

p(i)

is often called the best guess or mode for a multiple choice question.

Eliciting probabilities Knowing the best guess is useful, but does not tell as

much as what you know about the answer to a question as the entire probability

distribution p. So consider, is there a choice of utility function U such that

argmax
m

E[U(m)] = p?

It turns out a risk averse utility function is the answer. Specifically, we want to

use instead of U(m) = m(X), we want

U(m) = ln(m(X))

as our utility function.

Now this utility function is kind of weird. Since ln(1) = 0, and ln(m(X)) < 0
for anym(X) < 1, the best value we can score for a question is 0, and most scores

will be negative!

Example 35
Consider m1 = (0.2, 0.5, 0.25, 0.25) from earlier, and p = (0.5, 0.2, 0.15, 0.15).
Then for U(m) = ln(m(X)),

E[U(m)] = E[ln(m(X))]

= (0.5) ln(0.2) + (0.2) ln(0.5) + (0.15) ln(0.25) + (0.15) ln(0.25)

= −1.359237.
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Can we do better? Suppose that I use write down my true probabilities for m.

What is my expected utility then? Form = p, we have

E[m(X)] = ln(0.5)(0.5) + ln(0.3)(0.3) + ln(0.15)(0.15) + ln(0.15)(0.15)

= −1.276901.

which is slightly better than before.

Can I get an even better expected utility by lying about my probability beliefs?

It turns out that the answer is no, that my true beliefs about the probability gives

the maximum expected utility.

Fact 36
Let Ω be the set of positive probability vectors, so positive vectors whose compo-

nents add to 1. Let p > 0 be a probability vector on outcomes. For m ∈ Ω and

random variable X drawn according to p, let U(m) = ln(m(X)). Then

argmax
m

E[U(m)] = p.

Proof. In order to prove this result, we need to find

maximize f(m) =
∑

i p(i) ln(m(i))
subject to g(m) = m1 + · · ·+mn = 1

(∀i)(mi > 0).

This has linear constraints, but is not a linear program since the objective function∑
i ln(m(i))p(i) is not a linear function of the argumentm.

There is a bit of a difficulty here. The set Ω of feasible points is bounded but

not closed, since it only allows positive probability vectors. To get around this,

for ϵ > 0 let Ωϵ be points in Ω such that for all i, mi ≥ ϵ. Then Ωϵ is a closed

bounded set, and so we can find the optimum value of f(m) subject to g(m) = 0
by evaluating the objective function at the critical points (and because we have

an equality constraint, the critical points are found using the method of Lagrange

multipliers) and at the boundary.

First find the critical points. Both f and g have continuous first order partial

derivatives in the interior of Ωϵ, so the critical points satisfy:

∇f = λ∇g

for some nonzero λ. Here

∇f =

(
∂f

∂m1

, . . . ,
∂f

∂mn

)
=

(
p(1)

m(1)
, . . . ,

p(n)

m(n)

)
.
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Similarly,

∇g = (1, 1, . . . , 1).

So a Lagrange multiplier critical point is any point where

p(1)

m(1)
= · · · = p(n)

m(n)
= λ.

These equations have a solution whenever p(i) = λm(i) for all i. Since this is
true for all i, adding these equations together gives

p(1) + · · ·+ p(n) = λ[m(1) + · · ·m(n)]⇒ 1 = λ.

Hence p = m is the only critical point, at which point

f(p) =
∑
i

p(i) ln(p(i)).

Second, let’s consider the boundary. Ifm is on the boundary ofm(i), there must

be an i with m(i) = ϵ. So that contributes p(i) ln(ϵ) to the overall sum. Because

the natural logarithm of values in [0, 1] are nonpositive,
∑

j ̸=i p(j) ln(m(j)) ≤ 0.
So f(m) ≤ p(i) ln(ϵ), and for ϵ sufficiently small, this is at most f(p).
Hence for ϵ below some threshold, f(p) is the maximum value of the nonlinear

program, and p is the unique argument whichmaximizes the objective function.

So what this shows is that if your reward is based on the numbers you write on

the answers to a multiple choice question is the natural logarithm of the number

you put on the correct answer, then to maximize your expected score you should

put your true beliefs about the correct probability on each answer.

Problems
24.1 Suppose the economy either does well, medium, or poorly next quarter,

with probability 40%, 30%, and 30% respectively. Let X be the true answer.

Find the value ofm ∈ [0, 1]3 that maximizes E[Ui(m)], where

a) the utility function is

U1(m) = m(X),

b) or the utility function is

U2(m) = ln(m(X)).

161 271



Chapter 25
Shannon Entropy

Question of the DayHowmuch can randomly generated data be compressed?

Summary

• Shannon Entropy is a numerical score of how much randomness (uncer-

tainty) there is in a random variable.

In chemistry entropy refers to the lack of information about particles in a gas or

other system. In mathematics, the entropy is the lack of information in a system.

For instance, sayX ∈ {1, 2, 3, 4} has probability vector (0, 1, 0, 0). Then P(X =
2) = 1 and P(X ̸= 2) = 0. This is the maximium information a probability vector

can deliver, and the lowest amount of entropy.

Now suppose that my probability vector is (0.5, 0.2, 0.15, 0.15). Last time we

noted that if the reward given to value X is

U(m) = ln(m(X)),

then an optimal choice of m is just exactly p. Of course, multiplying by a constant

c > 0 so
U(m) = c ln(m(X))

also forces the player to behave optimially. Recall that logarithms of different bases

only introduce a multiplicate constant into the function, so for instance,

U(m) = log2(m(X)) = ln(m(X))/ ln(2).

Because m(X) ∈ [0, 1], log2(m(X)) ≤ 0. So given that a player plays optimally,

say that the negative of the average reward obtained is the entropy of the random

variable X .
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Definition 89
The entropy (aka Shannon entropy aka information entropy) of X with

probability vector p is

H(X) = −E[log2(p(X))].

Example 36
Let Y ∼ Bern(1/2). Then P(Y = 0) = P(Y = 1) = 1/2, and

H(X) = −[(1/2) log2(1/2) + (1/2) log2(1/2)]

= −[(1/2)(−1) + (1/2)(−1)] = 1.

Example 37
For X ∼ p = (0.5, 0.2, 0.15, 0.15), the average reward (playing optimally) is

−1.276901 and there is no way to do better. Therefore the entropy of X is

1.276901.

Since 1.276901 is slightly higher than 1, X has more randomness in it than a

single fair coin flip. We could say that X has roughly as much randomness as

1.276901 iid fair coin flips.

For (0, 1, 0, 0) the average reward is 0, which is the best possible: since p(i) ∈
[0, 1] for all i, E[V ] ≤ 0.
For a discrete random variable, p(i) is the density of the random variable with

respect to counting measure. We can generalize the definition of entropy to include

arbitrary density functions.

Fact 37
For X ∈ {1, 2, 3, . . . , xn}.

H(X) = −
n∑

i=1

p(xi) log2(p(xi)).

More generally, if X ∈ Ω has density fX with respect to measure µ,

H(X) = −
∫
Ω

log2(fX(s))fX(s) dµ.

Notation: What looks like a capital “H” letter is actually the capital of the Greek

letter eta, standing for entropy.
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Earlier we showed that the entropy of a Bern(1/2) random variable was 1. It

turns out that p = 1/2 in Bern(p) maximizes the entropy.

Fact 38
Let H(Bp) be the entropy of Bp ∼ Bern(p). Then argmaxH(Bp) = 1/2 and

maxH(Bp) = 1.

Proof. Using the product rule

[H(Bp)]
′ = − ln(p)− p/p+ ln(1− p) + (1− p)/(1− p) = ln((1− p)/p).

So H(Bp) is increasing for (1− p)/p ≤ 1 and decreasing for (1− p)/p ≥ 1 which

gives a unique maximum at p = 1/2.

In other words, for a single bit, entropy is maximized when the distribution on

the bit is uniform.

25.1 Claude Shannon

Shannon is one of the more amazing mathematicians of the 20th century. He is con-

sidered to have founded information theory with the 1948 paper “A Mathematical

Theory of Communication” which appeared in the Bell System Technical Journal.
He was also one of the founders of what we now call Theoretical Computer

Science, when he proved that digital circuits could solve all the problems that could

solved using Boolean algebra (logic) for his Masters thesis in 1937. At this point in

time computers were either analog (where states varied continuously) or digital

(taking on discrete states) and this was a major step forward in understanding the

capabilities of digital computers.

During WWII, he worked for Bell Labs on fire-control systems and cryptography.

That is when he became interested in understanding how to transmit information

when there is randomness laid on top of it.

A side-note: he also worked with Edward Thorp (who was noted for counting

cards at blackjack) to build a wearable computer capable of winning at roulette by

analyzing the wheel. Unfortunately, the wires from the computer to the speaker in

the ear kept breaking, so they never considered it a success.

25.2 Compressing data

The Shannon entropy also limits how much data can be compressed. To understand

this, first consider an example. Digital computers work with bits (binary digits),

numbers that are either 0 or 1. Suppose that I want to compress the set of bits

01110111. One way to do that is with a map. For instance, suppose we use a
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map. In a sequence of bits, we will map

01 7→ 0, 11 7→ 1.

Then we can map 01110111 to 0101. We say that this code compressed the data

by a factor of 2.

The reason that worked, is that out of the possible two-bit outcomes

{00, 01, 10, 11}, only the two {01, 11} appeared in our string. To handle more

complex strings, we would need a map that is invertible, so that given our coded

message, we can decode it easily.

For instance, consider the following code:

11→ 1

01→ 01

10→ 001

00→ 0001.

This map can be uniquely decoded. That means that given a coded sequence

100101001 there is a unique original sequence that would give that code. That is

because for each 1 in the coded message, there is either 0, 1, 2, or 3 zeros before the

previous 1 appears. And that number tells us if the decoded message bits should

be 11, 01, 10, or 00.
Is this a good code? Well, that depends on the message we are trying to en-

code. If the original message contains lots of 11 subsequences, then it is a good

code because these only take 1 bit to encode. If the original contains lots of 00
subsequences, then we are in trouble, as these require twice as many bits to encode.

So let p be a probability vector over the outcomes (11,01,10,00). The expected
number of bits used by our code is

(1)p(1) + 2p(2) + 3p(3) + 4p(4).

So for vector (0.5, 0.2, 0.15, 0.15), our code uses on average 0.5+0.4+0.45+0.6 =
1.95 bits to encode 2 bits of information.

A natural question then arises. Given a sequence of bits X what is the best on

average that a code can do? Shannon answered this question in his 1948 paper.

As he did, we begin by setting up the idea of an alphabet and words formed from

the alphabet.
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Definition 90
Let A be a finite set called an alphabet. The elements of the alphabets are called

letters. Then a word is a vector of any length whose components are all in A.
That is,

A∗ = ∅ ∪ A ∪ A2 ∪ A3 ∪ · · · .
For a word w ∈ A∗

, the length of the word is the value i such that w ∈ Ai
.

For example if our alphabet is {a, b, c}, then a, bcabb, and ∅ are all words but
aaaaa · · · is not since it contains an infinite number of letters from our alphabet.

Given a code f that transforms the alphabet of A1 into a word in A2 (so f :
A1 → A∗

2,) a natural question to ask is if f can be extended to a code on A∗
1 to A∗

2.

To do that, we need the idea of concatenation.

Definition 91
Given words w = (w1, . . . , wn) and v = (v1, . . . , vm), the concatenation of the

vectors, denoted w||v or con(w, v), is the single word (w1, . . . , wn, v1, . . . , vm).
This definition can be extended naturally to the concatenation of a finite number

of words.

Definition 92
For finite alphabets A1 and A2, and given code f : A1 → A∗

2, and word

(a1, . . . , an) ∈ A∗
1, define

g(a1, . . . , an) = con(f(a1), f(a2), . . . , f(an)).

Say that f is uniquely decodable if g : A∗
1 → A∗

2 is a 1-1 function.

For example, suppose A1 = {a, b, c, d}, f(a) = 1, f(b) = 01, f(c) = 10 and

f(d) = 11. Then g(aa) = 11 and g(d) = 11, so g is not a one to one function.

Theorem 11 (Shannon source coding Theorem)

Let A1, A2 be two finite alphabets. Suppose that X is a r.v. taking values in A1,

and f is any uniquely decodable code from A∗
1 to A

∗
2. Let Sf be the length of the

word f(X). Then
H(X)

log2(#A2)
≤ E[Sf ].

Moreover, there exists a code f ∗
such that

E(Sf∗) <
H(X)

log2(#A2)
+ 1.
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For our example,

p = (0.5, 0.3, 0.15, 0.15)

which gives

−
n∑

i=1

pi log2(pi) = 1.842179

Here #(A2) = 2, so log2(#(A2)) = 1. So any code for the two-bits problem

must use at least 1.842179 bits on average.

So our code that uses 1.95 is not the worst in the world.

25.3 Combining messages

Now suppose thatX is a random message and Y is a random message. How much

information/entropy is in the combined message (X, Y )?
Unsurprisingly, the information in two or more messages X and Y that are

independent random variables is the sum of the information stored in each message.

Fact 39
Suppose X1, X2, . . . , Xn are independent random variables. Then

H(X1, X2, . . . , Xn) = H(X1) +H(X2) +H(X3) + · · ·+H(Xn).

Proof. Recall that for independent random variables X1, . . . , Xn, the joint density

is the product of the individual densities. That is,

fX1,...,Xn(s1, . . . , sn) =
n∏

i=1

fXi
(si).

Taking the log base 2 of both sides gives

log2(fX1,...,Xn(s1, . . . , sn)) =
n∑

i=1

log2(fXi
(si)).

Setting si to Xi and taking the negative expectation gives:

−E[log2(fX1,...,Xn(X1, . . . , Xn))] = −E[
n∑

i=1

log2(fXi
(Xi))].

Using linearity of expected value complete the proof.

So what does that mean for the highest entropy state? Well, for a single bit the

highest entropy state is uniform. Therefore, for an iid stream of random bits, the

highest entropy state will also be uniform.
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Fact 40
For a finite setA, the highest entropy distribution onA is the uniform distribution.

Proof. Let X be a random variable over A. Suppose P(X = a) ̸= P(X = b). Then
−x ln(x) is a strictly concave function in (0, 1]. So creating a new random variable

with the same probabilities as X but with P(X ′ = a) = P(X ′ = b) = (P(X =
a) + P(X = b))/2 has a strictly greater entropy than X . That means that if X has

maximum entropy, then all the probabilities must be equal.

Problems
25.1 True or false: The Shannon entropy is always nonnegative.

25.2 Prove that X ∼ Bern(p) and Y ∼ Bern(1 − p) have the same Shannon

entropy.

25.3 What is the Shannon entropy of X ∼ Unif({0, 1})?

25.4 What is the Shannon entropy of X ∼ Unif({0, 1, 2, 3})?

25.5 Consider the code from {a, b, c} to {0, 01, 10} defined as

f(a) = 0, f(b) = 01, f(c) = 10.

Is f uniquely encodable?

25.6 Show that the code generated by

11→ 1

01→ 01

10→ 001

00→ 011.

is not uniquely encodable.

25.7 Suppose X1, . . . , Xn are iid Bern(0.7). For a given code/compression

scheme, what is the minimum number of bits on average needed to encode

a length n sequence?

25.8 Suppose Y1, . . . , Yn are iid Bern(0.3). For a given coding, what is the mini-

mum number of bits on average needed to encode a length n sequence?
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Game Theory
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Chapter 26
Introduction to Game Theory

Question of the Day Suppose you are randomly paired with another student

in the class. Each of you secretly writes down either α or β. The payoffs are
as follows:

• If you put α, other β, you get an A, other gets a C .

• If both put α, both get B−.

• If you put β, other α, you get C , other gets a A.

• If both put β, both get B+.

What should a rational person do?

Summary

• Game Theory involves decision making when games are not being played

against nature, but rather against another opponent who is also trying to

make decisions to maximize their utility.

Earlier, we looked at decision theory, which presents various ways of making

optimal decisions given partial information. Decision theory can be viewed as a

contest between the player and the state of nature. This state of nature is random

(not totally known), but also not antagonistic towards the player.

In game theory, we have one or more players who are each trying to maximize

their own utility by individually making decisions. Players do not know the

decisions that other players are taking. Often, this gives the players the chance to

cooperate and each achieve higher rewards, or compete, costing utility for all.

As with decision theory, we will have a function that tells us the result of

individual players making a decision. For n players, this function takes n inputs

(the actions for each player) and returns n outputs (the payoff for each player).
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When n = 2, this can be written in the form of a payoff matrix. For the question

of the day, this payoff is as follows.

other

α β

me

α (B−, B−) (A,C)
β (C,A) (B+, B+)

Another way of describing the actions is that players can either work together,

or they can try to undercut the under players.

Competition Suppose everyone out for themselves, and tries to undercut their

opponent. Assuming that the grades are ranked A > B+ > B− > C , the utility

might be

A = 3, B+ = 1, B− = 0, C = −1.
This would make the payoff matrix

other

α β

me

α (0, 0) (3,−1)
β (−1, 3) (1, 1)

What should I choose if I am out for myself? Consider the options

• If other chooses α: I choose α get 0, choose β get -1

• If other chooses β: I choose α get 3, choose β get 1

• In either case, α better than β

This makes choosing α a dominating strategy: no matter what the other players

does, if I choose α I will do better.

That means that everyone pursuing a policy of local rationality chooses α, and
suffers for it. Here (β, β) would be better for both players, but they will not get

there without effort. The economics term for this is that the payoff matrix is Pareto
inefficient.
This payoff matrix is fairly famous and has been given a name. It is known as

the Prisoners dilemma (Flood & Dresher at RAND in 1950)

In the original, story, two criminals are taken prisoner. Each can talk or stay

silent. If both stay silent then each serves 1 year. If one talks and the other keeps

silent, then the talker is freed, and the other serves 3 years. If both talk, then both

serve 2 years. In this setup, the dominant strategy for each is for both to talk.
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Cooperation The alternative of cooperation makes more sense. But does it

happen?

Well, psychologists have run this test, and it turns out that people will cooperate

much more often than in the self-interested case. One theory for why this happens

is the notion of empathy.
Suppose that each player not only cares about their own grade, but also want to

fellow player to do well. This effectively changes the payoff matrix.

Suppose that if a player gets A while other gets C , guilt changes their overall

reward to -1. The payoff matrix becomes:

other

α β

me

α (0, 0) (−1,−1)
β (−1,−1) (1, 1)

Unlike earlier, now there is no dominating strategy. If other picks α, best choice
α. If other picks β, best choice β.
That is not enough to guarantee that they pick the global optimum, but it is a

good start.

Selflessness The notion of selflessness goes a bit further than empathy. Now we

not only add guilt if get A, other gets C , but we are also happy for the other player

when they get an A, despite our getting a C .

other

α β

me

α (0, 0) (−1, 3)
β (3,−1) (1, 1)

Now β is a dominating strategy: it’s better no matter what other chooses. If

everyone thinks this way, leads to taking the best solution! In experiments, about

30% of participants choose β.
So empathy and selflessness are not just about being good people, these traits

actually can help society as a whole make better decisions!

Problems
26.1 True or false: Decision theory can be used to solve two-person games.

26.2 True or false: Game theory can be used to solve two-person games.
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Chapter 27
Two person zero sum games

Question of the Day In the game of Rock, Paper, Scissors, two players each

shake their hands then throw either Rock, Paper, or Scissors. The winner is

then determined using Rock beats Scissors, Paper beats Rock, and Scissors

beats Paper.

For the payoff matrix an entry of (a, b) means player I wins a and player 2

wins b.

Player II

r p s
r (0, 0) (−1, 1) (1,−1)

Player I p (1,−1) (0, 0) (−1, 1)
s (−1, 1) (1,−1) (0, 0)

What is the best strategy for players to use?
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Summary

• In a zero sum game, the outcomes (a, b) all satisfy a+ b = 0. So in a

two person zero sum game it is like Player II is giving a dollars to Player

I.

• TheMinimax Theorem states that every finite two person zero sum

game has a value V . There is a mixed strategy for Player I such that

they earn on average at V payoff regardless of what player II does, and

a mixed strategy for Player II such that II loses on average V payoff

regardless of what Player I does.

27.1 Zero sum games

A particular type of game is when the payoff’s earned by the players must sum

to zero. For one player to receive positive payoff, another player must receive

negative payoff.

Definition 93
In a zero sum game with n players, the outcome (a1, a2, . . . , an) all satisfy
a1 + · · ·+ an = 0.

Example 38
Consider the Odd-Even game: I pick a number, my partner picks a number. If the

sum is even, I pay my partner $1, otherwise the partner pays me $1. The payoff

matrix can be written as

Player II

odd even

Player I

odd (−1, 1) (1,−1)
even (1,−1) (1,−1)

If I play this game a lot of times in a row, and I always pick odd, then after a

while my opponents will figure out my strategy and I will always lose. Using a

random (mixed) strategy can help!

Note that if I pick even or odd as my strategy, each with 50% probability, then

no matter what strategy my opponent uses, the average payoff for myself will be

0, and the average payoff for my opponent will be 0. We say that the value of the
game is 0.
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Other common games similar to this are Rock, Paper, Scissors, and the more

complicated game of Rock, Paper, Scissors, Lizard, Spock invented by Sam Kass

and Karen Bryla.

Note that for two person zero sum games, it is not necessary to specify the payoff

in the form (a1, a2), because it is always the case that a2 = −a1.

Definition 94
A two person zero sum game is said to be in strategic form (aka normal form)

if it is a triple (X, Y,A) where

1. X is the nonempty set of strategies for Player I.

2. Y is the nonempty set of strategies for Player II.

3. A : (X × Y )→ R is the payoff function.

The game then proceeds as follows.

• Player I and Player II both choose their action simultaneously. Say Player I

chooses x ∈ X and Player II chooses y ∈ Y .

• Player II then pays A(x, y) utility to Player I.

How to optimize mixed strategies Consider a game where each player holds

either 1 or 2 fingers behind their back, and then bring out their arm at the same

time. Then

X = {1, 2}
Y = {1, 2}.

The payoff matrix is

Player II

1 2

Player I

1 −2 4
2 3 −5

Optimizing Player I’s strategy The question we want to answer is: Does one

side have an advantage in this game? First consider the expected payoff if Player I

plays strategy 1 with probability 3/5. This expected payoff depends on the strategy

used by Player II. That is,

II plays 1 : (3/5)(−2) + (2/5)(3) = 0

II plays 2 : (3/5)(4) + (2/5)(−5) = 2/5
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This is a strategy where Player I never loses utility to Player II (on average), but

can Player I do better?

We can describe Player I’s mixed strategy with a single parameter p that is the
probability that Player I plays strategy 1. If this occurs, then the expected payoff

depends on the strategy played by Player II:

II plays 1 : p(−2) + (1− p)(3) = 3− 5p

II plays 2 : p(4) + (1− p)(−5) = 9p− 5

So if II plays 1, then Player I wants to make p small, but if II plays 2, then Player

I wants to make p large.
There is a unique value p in [0, 1] where these two lines cross. That is, there

is a unique value p such that no matter what strategy Player II uses, the average

amount given from Player II to Player I is the same.

3− 5p = 9p− 5⇒ p = 8/14.

Therefore, the optimal strategy for Player I is use action 1 with probability 8/9,
and otherwise use strategy 2. This returns an expected value of

3− 5

(
8

14

)
= 9

(
8

14

)
− 5 = 2/14 = 0.1428 . . . .

So on average, Player I wins 1/7 utility from Player II.

Optimizing Player II’s strategy The same technique can be applied to optimize

Player II’s strategy. Let q be probability that Player II plays strategy 1.

I plays 1 : q(−2) + (1− q)(4) = 4− 6q

I plays 2 : q(3) + (1− q)(−5) = 8q − 5

Setting these two the same gives

4− 6q = 8q − 5⇒ q = 9/14,

and leads to an expected payoff of

−2(9/14) + 4(5/14) = 3(9/14)− 5(5/14) = 2/14 = 1/7.

If Player II uses their optimal strategy, then they can limit how much they

transfer to Player I to 1/7 on average. This seems a remarkable coincidence! By

playing as best they can, both players can get payoff from Player II to Player I of

1/7, regardless of what the other player does!
It turns out this is not a coincidence! There will always be a random choice

of action for Player I and a random choice of action for Player II such that the

expected payoff is the same regardless of the other player’s strategy! This common

payoff is called the value of the game.
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Terminology To make this a bit more precise, refer to elements of X or Y as

actions, or pure strategies. Mixing these pure strategies together gives a mixed
strategy.

Definition 95
A random variable over a set of strategies X is called a mixed strategy.

The Minimax Theorem states that the best mixed strategy for Player I has the

same expected rewards as the best mixed strategy for Player II.

Theorem 12 (The Minimax Theorem [10])

For every finite two person zero sum game

1. There is a number V called the value of the game.

2. There is a mixed strategy for Player I such that I wins on average V
regardless of what Player II does.

3. There is amixed strategy for Player II such that II loses average V regardless

of what Player I does.

Example 39
In the Question of the Day, the strategy (1/3, 1/3, 1/3) for both Player I and II

leads to a value of 0. Hence these are the best strategies to use.

The value V tells us whether Player I is on average winning, Player II is on

average winning, or if the game is fair.

Definition 96
Consider a two person zero sum game with value V .

• If V = 0, then the game is fair.

• If V > 0, then the game favors Player I.

• If V < 0, then the game favors Player II.
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Example 40
Change the Odd-Even payoff matrix again so that A(1, 2) = 2 (call the odd

strategy 1, and the even strategy 2):

Player II

1 2

Player I

1 −2 2
2 3 −4

What is the value of this game?

Answer

• Can analyze from either Player I or Player II perspective.

• Say Player I plays strategy 1 with probability pI and strategy 2 with proba-

bility pII .

• Player I:

II plays 1 : pI(−2) + (1− pI)(3) = 3− 5pI

II plays 2 : pI(2) + (1− pI)(−4) = 6pI − 4

• Setting them equal gives: 3− 5pI = 6pI − 4⇒ p = 7/11

• This makes the value V = 3− 5(7/11) = −2/11

We also could have found this answer from Player II’s perspective.

• From Player II’s point of view:

I plays 1 : pII(−2) + (1− pII)(2) = 2− 4pII

I plays 2 : pII(3) + (1− pII)(−4) = 7pII − 4

• So 2− 4pII = 7pII − 4⇒ p = 6/11

• So the value is V = 7(6/11)− 4 = −2/11

• Same value as above! (As guaranteed by Minimax Theorem)
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Relation to linear programming

It turns out that the minimax theorem is a special case of a much bigger theorem

called linear programming duality. We have only given examples for games where

each player has only two decisions to keep things simple, but the same result applies

when Player I has n decisions, and Player II hasm decisions for any positive integers

n andm.

In this case, to find the optimal value of the game, we would use linear program-

ming.

Problems
27.1 Consider the game with entries

Player II

1 2

Player I

1 −5 5
2 5 −5

What is the value of this game?

27.2 Consider the game with entries

Player II

1 2

Player I

1 −10 10
2 10 −10

What is the value of this game?
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Nash Equilibria

Question of the Day Is there an optimal mixed strategy when dealing with 3

or more players? How about for non zero sum games?

Summary For non zero sum games or for 3 or more players, there is no

guarantee that a single strategy is the right option. There will exist, however,

at least one Nash equilibrium, which is a strategy for each player that is

locally stable, which means that none of the players can change their strategy

without reducing their expected payoff.

When we are dealing with a two person, zero sum game, there will be a unique

value of the game V . Player I will have an optimal strategy such that when played,

the expected payoff to Player I is V regardless of the strategy employed by Player

II.

Similarly, there is an optimal strategy for Player II such that when played, the

expected payoff to Player I is V regardless of the strategy used by Player I.

However, if the game is not zero sum, or if there are three or more players, there

is no such value for the game. Instead, we end up with a much weaker result.

First we update our notion of strategic form to deal with three or more play-

ers.

Definition 97
The strategic form (aka normal form) for an n-player game is G =
(S1, . . . , Sn, u1, . . . , un) where Si is the set of strategies for player i, and ui :
(S1× · · ·Sn)→ R tells the payoff for player i given the choice of strategies from

all the players.
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As usual, we will assume each player is trying to maximize their expected utility.

Consider the following game:

Player 2

a b

Player 1

a (1, 2) (0, 0)
b (0, 0) (2, 1)

For this payoff table, no pure strategy for either Player 1 or 2 is dominant. On

the other hand, there are strategies where once used, neither player can switch

strategies without lowering their payoff.

• For strategy (a, a), neither can switch without lowering payoff.

• For strategy (b, b), neither can switch without lowering payoff.

• We call strategies (a, a) and (b, b) with this property Nash equilibria.

Now look at the following game

Player 2

a b

Player 1

a (1, 2) (4, 0)
b (3, 0) (2, 1)

From any pure strategy, some player wants to switch.

Means no pure strategies are Nash equilibria.

Definition 98
A probability distribution σi on Si (the strategy set for player i) is called amixed
strategy.

Notation

• Let σi be the mixed strategy played by player i

• Let σ−i = (σ1, . . . , σi−1, σi+1, . . . , σn) be the mixed strategies played by

every player other than i

• Let ui(σ1, . . . , σn) be the expected payoff for Player i when each player uses

mixed strategy σi
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Definition 99
A strategy σ is a Nash equilibrium if for all i

ui(σ) = max
σ′
i

ui(σ
′
i, σ−i).

In other words, a set of mixed strategies is a Nash equilibrium if changing one

player’s mixed strategy leads to a lower expected payoff for that person.

Theorem 13 (Nash 1951 [9])

Any finite game has at least one Nash equilibrium.

The proof uses Kakutani’s fixed point theorem from analysis, and is beyond the

scope of this course.

Another way to say it is that at the Nash equilibrium, every player is insensitive

to changes in strategy. Consider the following example.

Example 41
Consider again the payoff matrix:

Player 2

a b

Player 1

a (1, 2) (4, 0)
b (3, 0) (2, 1)

Show that no pure strategy by the players is a Nash equilibrium.

Answer There are four pure strategies.

• From (a, a) (so Player 1 plays a and Player 2 plays a), Player 1 would do

better by moving to strategy b.

• From (a, b), Player 2 does better to move to strategy a.

• From (b, a), Player 2 does better to move to strategy b.

• From (b, b), Player 1 does better to move to strategy a.

So none of the four pure strategies can be a Nash equilibrium.

Despite no pure strategies being a Nash equilibrium, there are mixed strategies

that use randomness that form a Nash equilibrium.
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Example 42
Consider the payoff matrix from the last example. Find the Nash equilibrium.

Answer Say Player I uses a mixed strategy where a is played with probability

p. Then the expected payoff for Player II depends on whether or not Player II

plays a or b:

E[Payoff for Player II|Player II plays a] = 2p+ 0(1− p)

E[Payoff for Player II|Player II plays b] = 0p+ 1(1− p)

Now suppose Player I chooses p in order to make these expected returns equal.

2p = 1− p⇒ 3p = 1⇒ p = 1/3.

When Player I plays a with probability 1/3, then no matter what strategy Player

II uses (random or deterministic), Player II has the same expected return. But

two can play at that game (so to speak)!

Suppose Player II plays a with probability p and b with probability 1− p.

E[Payoff for Player I|Player I plays a] = 1p+ 4(1− p)

E[Payoff for Player I|Player I plays b] = 3p+ 2(1− p)

Choosing p to make these expected returns equal:

1p+ 4− 4p = 3p+ 2− 2p⇒ 2 = 4p⇒ p = 1/2.

So a Nash equibilium is:

((1/3, 2/3), (1/2, 1/2))

Problems
28.1 Consider the following payoff matrix.

Player 2

a b c

Player 1

a (−3,−4) (−1, 2) (2,−3)
b (−1, 2) (3,−2) (0, 0)

Show that no pure strategies for the players forms a Nash equilibrium.
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28.2 Consider the following playoff matrix.

Player 2

a b

Player 1

a (6, 4) (5, 5)
b (3, 4) (7, 1)
c (8, 2) (3, 4)

Show that no pure strategy for the players are also a Nash equilibrium.
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Chapter 29
Randomized Algorithms

Question of the Day Suppose that at least one element of an array of n
elements has value a. What is the fastest way to find such an element?

In our development of game theory, where we are playing against an adversary,

we found that usually the best approach was to make random decisions. This

enabled the expected return to be optimized. It turns out that even when our

“adversary” is not another person, but a fixed set of data, it also helps to apply

random choices!

When we intentionally introduce randomness into an algorithm, it is (unsupris-

ingly) called a randomized algorithm.

Definition 100
A randomized algorithm is an algorithm that can take steps based on the value

of one or more random variables.

In general, the assignment of values to a random variable in a randomized

algorithm is taken to be independent during each run of the algorithm. That means

that two runs of the same algorithm might generate different values. Another way

of saying this is that the output of the algorithm is itself a random variable!

Definition 101
AMonte Carlo algorithm has output that is a nontrivial random variable.

An early user of Monte Carlo algorithms was Stanislaw Ulam, who advocated

for their use during the Manhattan Project, the United States’ effort to build an

atomic bomb. His friend Nicholas Metropolis knew that Stanislaw liked to gamble:

and so he jokingly called them Monte Carlo algorithms after the famous casino in

Monte Carlo, Monaco.
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In the question of the day, we are not after a random result. Instead, we want

the correct result, but we possibly use a random number of steps to get it. Such an

algorithm is named after another famous location for gambling.

Definition 102
A randomized algorithm whose result is always a deterministic function of the

input is a Las Vegas algorithm.

For the question of the day, we are looking for a Las Vegas type of algorithm.

We’ll look at Monte Carlo algorithms and what they are capable of in the next

chapter.

29.1 Deterministic and random search

Consider the question of the day. I have an array of n elements, which means that

for any number from 1 to n, I can pass that number to the computer and obtain

the value of the array. I am interested in searching for a value that I know to be

present.

One simple approach is just to query each of the values of the array in order

until I find the element that I am looking for.

Deterministic_search Input: Array x, Value a

1) For i from 1 to n
2) If x(i) = a then return i

In order to analyze the running time of such an algorithm, computer scientists

use two common approaches, the average time and the worse-case time. The worst-
case time assumes that the data is chosen as badly as possible to make the number

of steps used by the algorithm as many as possible. For this algorithm, the worst

thing that can happen is to make x(n) = a. Then the algorithm has to check all n
different values of the a.
Now suppose that instead of starting at 1, we start with a random number drawn

uniformly from 1 to n. Then we search in order the elements.

Random_search Input: Array x, Value a

1) Draw X uniformly from 1 to n
2) For i from X to n
3) If x(i) = a then return i
4) For i from 1 to X − 1
5) If x(i) = a then return i

On average, this approach uses half as many elements as deterministic search.
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Lemma 1
Let T denote the number of elements of x accessed by Random_search. Then
E[T ] = (n+ 1)/2.

Proof. Suppose x(j) = a. Then if X ≤ j, then the number of elements searched is

j −X + 1. If X > j, then the number of elements searched is n−X + 1 + j.

E[T ] = E[(j −X + 1)I(X ≤ j) + (n−X + 1 + j)I(X > j)]

= E[j −X + 1 + n(I(X > j)]

= j − n+ 1

2
+ 1 + n

(
1− j

n

)
= j − n+ 1

2
+ 1 + n− j

=
n+ 1

2
.

29.2 Measuring running time

For randomized search, we said that E[T ] = (n+ 1)/2. For this notation to make

sense, really T should be dependent on n, so E[T (n)] = (n + 1)/2. Usually the

input parameters that T is dependent on is clear from the context of the algorithm,

and so is omitted in practice.

In this case, we only saved a factor of 2 by using randomness, but often we can

save more than a constant factor, we can save a factor that depends on n itself. In

analyzing algorithms, we often do not care about what are called lower order terms.
For example, suppose that I have an algorithm that runs in 4n3 + n2

steps. For

n = 100, 4n3 = 4, 000, 000 and n2 = 10, 000. The n2
is small relative to the 4n2

,

and becomes smaller in relative terms the larger n is. So n2
is a lower order term

in this example. Order notation is designed to allow us to ignore these lower order

terms. Technically, order notation defines sets of functions. For a function g, the
four most commonly used sets are O(g(n)), Ω(g(n)), Θ(g(n)), and o(g(n)).

Definition 103
Say that f(n) ∈ O(g(n)) if

(∃C)(∃N)(∀n ≥ N)(f(n) ≤ Cg(n)).
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Example 43
Show that n2 + 10n ∈ O(n2).

Proof Let C = 20 and N = 1. Let n ≥ N = 1. Then

20n2 = 10n2 + 10n2 ≥ n2 + 10n.

This is often called Big-O notation. If f(n) ∈ O(g(n)) this means that as n gets

large, g(n) dominates f(n) when constant factors are ignored. Note that we could

have also shown that n2 + 10 ∈ O(n3). Making the function inside the Big-O

bigger does not change the truth of the statement, it just makes the statement less

useful.

Constants do not matter in Big-O notation.

Lemma 2
If f(n) ∈ O(g(n)), then for any c1, c2 ∈ R, c1f(n) ∈ O(c2g(n)).

There is also a corresponding lower bound notation: Big-Omega.

Definition 104
Say that f(n) ∈ Ω(g(n)) if

(∃C)(∃N)(∀n ≥ N)(f(n) ≥ Cg(n)).

Example 44
Show that n2 + 10n ∈ Ω(n2).

Proof Using N = 1 and C = 1, let n ≥ 1. Then n2 + 10n ≥ n2
.

When we have a function that is both Big-O and Big-Omega of a function, then

it is Big-Theta.

Definition 105
If f(n) ∈ O(g(n)) ∩ Ω(g(n)), then f(n) ∈ Θ(g(n)).

There’s one more order notation that is used, and that is little-o. Little-O (like

Big-O) is an upper bound, but it is an upper bound that is known to be too weak.

In other words, the function is growing more slowly than the function inside the

little o.
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Definition 106
Say that f(n) ∈ o(g(n)) if

(∀C > 0)(∃N)(∀n ≤ N)(f(n) ≤ Cg(n)).

Note the difference between Little-o and Big-O: in Little-o the rest of the state-

ment works for any constant bigger than 0, for Big-O there only needs to be some

constant. Hence O(g(n)) ⊆ o(g(n)).
Often it is easier to determine function order using limits.

Lemma 3
Suppose f(n) and g(n) are functions such that

lim
n→∞

f(n)

g(n)
= L.

1. If L <∞ then f(n) ∈ O(g(n)).

2. If L = 0 then f(n) ∈ o(g(n)).

3. If L > 0 then f(n) ∈ Ω(g(n)).

4. If L ∈ (0,∞) then f(n) ∈ Θ(g(n)).

Notation 4
When using order notation the equals sign= is often substituted for set inclusion,

∈.

Example 45
We write things like n3 = n2 +O(n3) and n2 + 10n = Ω(n2).

For the question of the day, both the deterministic and random search use Θ(n)
steps. In the next chapter, we will look at an algorithm where randomness does not

just improve the constant, but actually changes the order of the number of steps

needed as a factor of n.
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QuickSort and QuickSelect

Question of the DayWhat is the fastest way to find the median of an array

of values?

30.1 Using QuickSelect to find the median

An important Las Vegas algorithm is QuickSelect, which is used to find the sample
median of a set of numerical data in an array. Roughly speaking, this is the middle

value of the array. Recall that ⌊a⌋ is the floor of a, which rounds a down to the

closest integer value, and ⌈a⌉ is the ceiling of a which rounds a up to the closest

integer value.

Given an array of values, the order statistics are a permutation of indices that

place the values in order. Parentheses around subscripts indicates order statistics.

That is, write x(k) for the kth order statistic. Then for an array of n items, x(1) is the

smallest value, and x(n) is the largest. Formally, this can be expressed as follows.

Definition 107
For an array x = (x(1), x(2), . . . , x(n)) of values, say that

x(1) ≤ x(2) ≤ · · · ≤ x(n)

are the order statistics of x if there exists a permutation σ such that for all

i ∈ {1, . . . , n},
x(i) = x(σ(i)).

For an odd sized array, the order statistic in the middle of the array values is the

sample median. For an even sized array, the arithmetic average of the two order

statistics closest to the middle is the sample median. This can be codified in the

following way.
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Definition 108
For an array x with order statistics x(1), . . . , x(n), the sample median is

m =
x(⌊(n+1)/2⌋) + x(⌈(n+1)/2⌉)

2
.

The sample median is also sometimes just called the median of the array.

One approach to finding the median is to first find the permutation σ that puts

the data in order, and then directly use the definition. Finding σ is known as sorting
the data, and in general takesΘ(n ln(n)) steps. That ln(n) factor is slowly growing,
but for n = 106 is almost 14, making it a significant factor.

For convenience in this section assume that all the values in the array are distinct.

If they are not, simply assign them a preference based on their original ordering.

So for example, if the original array was (1.1, 1.7, 1.7, 1.4), we would say that the

value 1.7 in position 2 beats the value 1.7 in position 3 when it comes to sorting.

(This is also known as a stability criterion.)

30.2 QuickSort

One randomized algorithm for sorting is called QuickSort. This is a recursive

algorithm: it is allowed to call itself, possibly with different parameters. In the

case of QuickSort, it randomly selects a value of the array, sorts the array into two

pieces, a left piece consisting of those values less than the selected value, and a

right piece consisting of those values greater than or equal to the selected value.

QuickSort Input: Array x

1) Let n be the number of values in the array X
2) If n = 1, return x
3) Else

4) Choose I uniformly from 1 to n
5) Let ℓ and r be empty arrays

6) For i from 1 to n
7) If x(i) < x(I) then add x(i) to the end of ℓ
8) Else add x(i) to the end of r
9) ℓ′ ←QuickSort(ℓ)
10) r′ ←QuickSort(r)
11) Return the array (ℓ′, x(I), r′).

The running time of sorting algorithms can be measured by the number of

comparisions they make. In other words, for i and j, how many times to they check

if x(i) < x(j)? It turns out to be related to the harmonic numbers.
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The second idea uses the harmonic numbers.

Hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
.

Fact 41
Let T (n) be the number of comparisons used by QuickSort on an array of n
elements. Then

E[T ] = 2(n+ 1)Hn − 4n.

The proof will use two important ideas. To understand the first idea, suppose an

array has order statistics

3, 4, 8, 9, 11, 17.

Consider 4 and 11. If 8 is selected as a pivot, then 4 and 11 are each compared to

8, but they are not compared to each other, because 4 is assigned to ℓ and 11 is

assigned r, and the recursive calls do not communicate with each other.

If 17 is chosen as the pivot, then both 4 and 11 are sent to ℓ, and they still have a

chance of being compared to each other. Out of the elemnts 4, 8, 9, 11 if either 4 or
11 is chosen as a pivot, then 4 and 11 will be compared to each other, but if 8 or

9 is chosen they will not. Pivots keep getting chosen until one of 4, 8, 9, or 11 is

the pivot, so conditional on this happening, there is a 2/4 chance that they will be

compared.

For the ith order statistic x(i) and jth order statistic x(j), the chance that they

are compared is 2/|j− i+1| because out of the |j− i+1| elements in the interval

bounded by x(i) and x(j), there are exactly two choices of pivot that lead to these

values being compared.

Now the stage is set for the proof of the running time of QuickSort.

Proof. Let Bi,j be the indicator that values x(i) and x(j) are compared in QuickSort.

Then the total number of comparisons is

T =
∑

1≤i<j≤n

Bi,j,

and by linearly of expectation

E[T ] =
∑

1≤i<j≤n

E[Bi,j].

The mean of a random variable that is either 0 or 1 is just the probability that it

is 1, which is (as shown right before before the proof)

2

j − i+ 1
.
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That is,

E[T ] =
∑

1≤i<j≤n

2

j − i+ 1
.

There are n− 1 pairs where j − i = 1, n− 2 pairs where j − i = 2, and so on,

making,

E[T ] =
2(n− 1)

2
+

2(n− 2)

3
+

2(n− 3)

4
+ · · ·+ 2

n

= 2

[
n

2
− 1 +

1

2
+

n

3
− 1 +

1

3
+ · · ·+ n

n
− 1 +

1

n

]
= 2[n(Hn − 1)− n+Hn]

= 2(n+ 1)(Hn)− 4n.

The harmonic numbers Hn are close to ln(n).

Fact 42
The harmonic numbers satisfy

ln(n) + γ ≤ Hn ≤ ln(n) + 1,

where γ = 0.5772156649 . . . is Euler’s constant.

So the mean number of comparisons for QuickSort is about 2n ln(n).
It turns out (from an analysis of lg(n!) using Stirling’s bounds) that any algorithm

that sorts by comparisons must use an average of 1.44n ln(n) comparisons on

randomly arranged data. So QuickSort is pretty close to the best possible, at least

on average.

30.3 QuickSelect

Now consider the question, is it possible to find the median in time faster than

Θ(n ln(n))? After all, a complete sorting of the data is not the goal, the goal is

merely to find the order statistic (or two order statistics for an even size array)

closest to the middle.

The answer is yes, it is possible to build an algorithm that finds the sample

median in O(n) time! It operates in a fashion somewhat similar to QuickSort.
Instead of sorting all the elements, first randomly pick a few elements, then only

sort those elements. To do this, the algorithm needs to be broader in scope. The
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algorithm has two inputs: the array, and a value k. The output is then the kth order

statistic of the array.

QuickSelect Input: Array x, integer k

1) Let n be the number of elements in x
2) If n = k = 1 then return x(1)
3) Else

4) Draw I uniformly from 1 to n
5) For i from 1 to n
6) If x(i) < x(I) then add x(i) to the end of ℓ
7) Else add x(i) to the end of r
8) Let nℓ be the number of elements in ℓ
9) If k − 1 = nℓ, return x(I)
10) If k − 1 < nℓ, return(QuickSelect(ℓ, k))
11) If k − 1 > nℓ, return(QuickSelect(r, k − nℓ))

Let v be the output of the algorithm. Because of possible ties among the array

values, we cannot say that the number of indices with value less than v is exactly

k − 1, but we can say something close.

Fact 43
QuickSelect(x, k) returns a value v such that x(k) = v.

Proof. Use strong induction on n. For the base case where n = 1, x(1) = x(1) so
the algorithm returns the correct value.

Suppose it works for all values n′ ≤ n, what happens when we consider an

array of size n+ 1? Well, if k = nℓ, then we have found the value where exactly k
elements of the array are at most the value. If k > nℓ, then there must be a sort of

the array where the first nℓ items are ℓ. So we are looking for the kth smallest item

in this subarray which has size at most n. Hence the recursive call in line 9 returns

the correct value. Similarly, if k > nℓ, then all the values in ℓ are strictly smaller

than x(I), so we can simply look for the k − nℓ smallest value in the rest of the

array in r. Since r also has size at most n, our induction hypothesis allows use to

use the recursive call in line 10 to finish the job.

So it works, but how long does it take to work?

Fact 44
Let T (n) denote the number of comparisons used byQuickSelect. Then

E[T (n)] ≤ 4n
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Proof. Proceed by strong induction. When n = 1, the number of comparisons is 0,

so we are good.

Suppose now that the inequality holds up to n− 1, and consider an array with

n arguments. We are looking for the k smallest item. That means that k − 1 items

are smaller, and n− k items are larger.

kk − 1 values n− k values

Each call we choose our I and then compare the other elements. If we land on I
such that exactly k − 1 values are less than x(I), then we need to compare the n
other values in the array to x(I). If nℓ = k, then we are done, no more comparisons.

If k < nℓ (which happens with probability (n − k)/n), then we eliminate some

elements. Note [nℓ|nℓ > k] ∼ Unif({k + 1, . . . , n}, and the elements up to nℓ are

kept. So on average

E[nℓ|nℓ > k] = (n+ k + 1)/2

are left.

Similarly, if k > nℓ (which happens with probability (k − 1)/n), we eliminate

on average

E[nℓ − 1|nℓ < k] = (k − 1 + 1)/2− 1

elements from the array. That leaves (on average) n+ 1− (k/2) elements.

Hence if E[T (i)] ≤ 4i for all i < n,

E[T (n)] ≤ n+ 4

[
n− k

n
· n+ k + 1

2
+

k − 1

n
· 2n− k + 2

2

]
.

The right hand side is a quadratic equation in k, and so easy to maximize. The

largest the righthand side can be occurs at k = (n+ 1)/2, which gives,

E[T (n)] ≤ n+ 4

[
(3/2)n2 − 1

2n

]
≤ n(1 + 3) = 4n,

which completes the induction.

Hence we can find the median in Θ(n) time!

Floyd-Rivest

In QuickSelect only a single pivot was used, which led to our constant of 4. By
using more initial random values, it is possible to get an algorithm that to first

order only requires 1.5n comparisons on average to find the sample median.
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Chapter 31
Randomized Verification

Question of the Day Suppose we have three n by n matrices, A, B, and C .

Can we verify that A ·B = C?

Summary

31.1 Matrix multiplication

If you have learned some linear algebra, you have learned about the dot product of
two vectors in Rn

.

Definition 109
The dot product of two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) where
each yi ∈ R and each xj ∈ R is

x · y = x1y1 + · · ·xnyn =
n∑

i=1

xiyi.

Since the definition of the dot product involves nmultiplications, and n additions,

the total number of arithmetic operations to calculate the dot product is O(n).
Calculating the dot product requires reading the vector x, and so it is also Ω(n).
Hence the running time is Θ(n).
An n by n real-valued matrix A is a table of numbers such that Aij refers to the

number in the ith row and the jth column. We can multiply an n by nmatrix times

a column vector as follows.
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Definition 110
If A is a real-valued n by n matrix, and x is a column vector, then thematrix-
vector product,

Ax = y,

where y is also a column vector whose ith entry is the dot product of the ith row

of A and x.

To calculate a matrix-vector product, we need to find n dot products, and so

matrix-vector product requiresO(n2) arithmetic operations. It also requires reading

A which contains n2
entries, so the time to compute a matrix-vector product for

general matrices is Θ(n2).
If we take an n by n matrix B, we can write it as n column vectors.

B =

b1 b2 b3 · · · bn


Then each column of the matrix product AB has columns equal to the product

of A times the columns of B.

Definition 111
Let A and B be real-valued n by n matrices. Let bj denote the jth column of

B. Then C = AB is also an n by n real-valued matrix known as the matrix
product of A and B if the jth column of C is Abj for all j ∈ {1, . . . , n}.

Using the definition to calculate matrix multiplication of two n by n real-valued

matrices shows that matrix multiplication can be accomplished in O(n3) time.

Unlike the dot product and matrix-vector multiplication, the input size to matrix

multiplication is Ω(n2). So it is possible that better algorithms for matrix multipli-

cation than the definition will be found. In fact, there is an algorithm that runs in

O(n2.372...). So if the best possible matrix multiplication requires Θ(nω) time, the

best we know (as of 2019) is that 2 ≤ ω ≤ 2.372 . . ..

31.2 Verification

So we have not yet pinned down solving the matrix multiplication problem, but

how about the verification problem? In a verification problem, we are given the

solution, and only wish to ask whether or not it is a valid solution for the original

problem. Begin with the original problem.
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Definition 112
Let P be a proposition that takes input I ∈ I and returns either T or F. Then the

decision problem for P is to create an algorithm A such that

(∀I ∈ I)(A(I) = P(I)).

For example, the input set I might be the set of positive integers, and the

proposition something like “the number that is input is prime.“

Another way to say this is given a particular proposition, is there an algorithm

that determines for each input if the proposition is true or false? So far the question

of what is an algorithm has been set aside. Traditionally, this is done via the use of

a program on a Turing machine, but this level of definition will not be needed for

what follows.

In the decision problem, the input is given and the goal is to determine if the

proposition is true or not. A more difficult problem is to solve the proposition by

finding the input for which the statement is true.

Definition 113
Let f : I → J be a computable function. Then the function problem is to find

an algorithm A such that

(∀I ∈ I)(f(I) = A(I)).

Given a particular run of a function problem algorithm, the *verification problem*

is to show that the output is correct.

Definition 114
The verification problem associated with a function problem f : I → J is the

decision problem over input set I × J

V(f(I) = J).

It seems that verification should be easier than the solution problem. After all,

we are being handed the solution and being asked whether it works or not!

Matrix multiplication

Consider our problem of veryifying that the multiplication of two n by n matrices

A andB leads to a third matrixC . The input set for the verification problem is then

of the form (A,B), C) where A, B, and C are n by n matrices. The proposition of

interest is then:

V((A,B), C) = (AB = C).

199 271



Mark Huber Stochastic Operations Research

Actually solving for C given A and B (the function problem) can be done using

theO(n2.372...) algorithm for matrix multiplication. But can the verification problem

be done faster? The answer is yes, and is shown by Freivald’s Algorithm.

31.3 Freivald’s Algorithm

Freivald [4] developed a randomized algorithm to check if AB = C for any three

input matrices A, B, and C .

Freivald’s_Alg Input: A,B,C

0) Let n be such that A, B, and C are n by n matrices

1) Draw x uniformly from {0, 1}n
2) Let y ← A(Bx)− Cx
3) Return the value of proposition (y = 0)

Fact 45
If AB = C , then Freivald’s_Alg will always return true (T). However, if AB ̸=
C , there is at least a 50% chance that the algorithm will return false (F).

Proof. Let D = AB − C . If AB = C then D is the matrix of all 0’s, and Dx is

the vector of all 0’s no matter what choice of x we make. So if AB = C , then the

algorithm always returns T.
However, if AB ̸= C , then there must be an i and j such that entryDij ̸= 0. Let

ri be the ith row of D, and consider

ri · x = Dijxj +
∑
k ̸=j

Dikxk.

Then the sum on the right hand side must add to something. Since xj was chosen

uniformly from {0, 1}, Dijxj is either 0 or Dij with equal probability. Hence the

chance that ri · x = 0 is at most 50%. So the algorithm has at least a 50% chance of

detecting that nonzero entry!

31.4 Classes of randomized algorithms

Freivald’s algorithm is an example of an algorithm that runs in randomized poly-
nomial time, or RP for short. Algorithms in RP return either true or false, just as

decision problems and verification problems do.
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Definition 115
Say that an algorithm A is in randomized polynomial time or RP if A(I) has
output to the question of (∃I)(P(I)) such that

• The running time of the algorithm is polynomial in the input size with

probability 1.

• For all I ∈ I , if P(I) = T then A(I) = T.

• For all I ∈ I , if P(I) = F then P(A(I) = F) ≥ 1/2.

The last two conditions can be expressed more compactly using indicator func-

tions. Recall that I(p) = 1 if p is true and is 0 otherwise. Then the last two

conditions to be RP are equivalent to

(∀I ∈ I)(P(A(I) = P(I)) ≥ 1/2 + (1/2)I(P(I)).

Pictorially, an algorithm in RP obeys the following rules:

Correct answer is TRUE Returns TRUE

1

Correct answer is FALSE

Returns TRUE

Returns FALSE

≤ 0.5

≥ 0.5

False positives and negatives

Say that the algorithm has a false positive if it returns TRUE when the correct

answer is FALSE. Similarly, say that it returns a false negative if the algorithm

returns FALSE when the correct answer is TRUE.

Then one way to describe an RP algorithm is that it is a polynomial expected time

algorithm where the false negative rate is 0 and the false positive rate is bounded

above by 1/2. What if we wanted the false positive rate to be smaller?

One approach is to run the RP algorithm multiple times, making independent

choices at each run for the random value. Consider running Freivald’s Algorithm

four times on the same set of matrices. Suppose that output was

T, T, F, T.

If the correct answer was T, then the randomized algorithm would never have

given a false answer, so we know in this case that the answer must be F. On the
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other hand, if the output was

T, T, T, T

then there are two possibilities. Either, the correct answer was T, or the correct
answer was F, and the algorithm was wrong four times in a row. The chance of

this occuring is at most (1/2)4. The picture looks like this:

Correct answer is TRUE Returns TRUE four times

1

Correct answer is FALSE

Returns TRUE four times

Returns FALSE at least once

≤ (1/2)4

≥ 1− (1/2)4

This process is called amplification.

Amplification Input: I, k

4) For i from 1 to k
5) Let Ai ← A(I)
6) Return ∧ki=1Ai

Fact 46
SupposeA is an algorithm in RP for the decision problem (P , I). Then B(I, k) =
Amplification(k) satisfies

• If P(I) = T, then B(I, k) = T with probability 1.

• If P(I) = F, then P(B(I, k) = F) ≥ 1− (1/2)k.

Proof. Suppose P(I)) = T. ThenA(I) returns T with probability 1, no matter how

many times the algorithm is run. The logical AND of all three of the outputs will

be 1 with probability 1.

Similarly, if P(I) = F, then the only way B(I, k) is not false is if every single

Ai = T. This happens with probability at most (1/2)k. The complement rule then

gives the result.
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Example 46
Suppose the goal is to build a version of Frievald’s Algorithm that is right at

least 7/8 of the time. Then we run it three times and take the logical and of the

output. By the above result, the chance of giving a wrong answer is at most

1− (1/2)3 = 7/8.

31.5 Other computational complexity classes

What if our algorithm is always correct when the answer is false, and only some-

times wrong when the answer is true? Then we are in the complementary class of

RP, called co-RP.

Definition 116
Say that an algorithm A is in complementary randomized polynomial time
or co-RP if A(I) has output to the question of (∃I)(P(I)) such that

• The running time of the algorithm is polynomial in the input size with

probability 1.

• For all I ∈ I , if P(I) = F then A(I) = F.

• For all I ∈ I , if P(I) = T then P(A(I) = T) ≥ 1/2.

As with RP, the last two conditions can be expressed more compactly using

indicator functions.

(∀I ∈ I)(P(A(I) = P(I)) ≥ 1/2 + (1/2)(1− I(P(I))).

Amplification works the same way for co-RP as RP.

Some algorithms make mistakes for both true and false answers, but not more

than one-third of the time.

Definition 117
An algorithm A is in bounded probability polynomial time or BPP if A(I)
has output to the question of (∃I)(P(I)) such that

• The running time of the algorithm is polynomial in the input size with

probability 1.

• (∀I ∈ I)(P(P(I) = A(I)) ≥ 2/3).

Amplification is a bit different for BPP algorithms. Namely, run the algorithm

for an odd number of times, and take the majority winner.
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Example 47
A BPP algorithm is run 3 times and the majority winner is taken. What is the

largest chance that it made an error?

Answer Say a trial is R if the answer is right andW if it is wrong. Then the

majority winner is wrong if the three trials areWWW ,WWR,WRW , RWW ,

which has probability at most

(1/3)(1/3)(1/3) + 3[(1/3)2(2/3)] = 7/27 ≈ 0.2592 . . . .

Note the answer is the same as P(X ≥ 2) where X ∼ Bin(3, 1/3).
For a Las Vegas algorithm that is correct all the time, we call it ZPP.

Definition 118
An algorithm A is in zero-error probabilistic polynomial time or ZPP if

A(I) has output to the question of (∃I)(P(I)) such that

• The running time of the algorithm is a random variable whose expected

value is polynomial in the input size with probability 1.

• (∀I ∈ I)(P(P(I) = A(I)) = 1).

In terms of false positive and false negative rates, this can be summarized as

follows.

Algorithm Type False Positive Rate False Negative Rate

RP 1/2 0
co-RP 0 1/2
BPP 1/3 1/3
ZPP 0 0

Problems
31.1 True or false: A BPP algorithm might return the correct answer 1/2 of the

time.

31.2 A BPP algorithm is run 5 times and the majority winner is taken. What is

the largest chance that it made an error?
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Chapter 32
Randomized algorithms for Linear and
Integer programming

Question of the Day Consider the following set cover problem. Let U =
{1, 2, 3, 4, 5, 6, 7} and

S1 = {1, 6}
S2 = {3, 4}
S3 = {5}
S4 = {1, 2, 3}
S5 = {2, 4, 6, 7}
S6 = {4, 5, 6}
S7 = {7}

Find the smallest collection of Si whose union is U .

Summary In this section we will talk about

• The set cover problem.

• Integer programming.

• Linear programming.

• Randomized rounding.
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Two of the most powerful tools in Operations Research are linear programming
and integer programming.
These are used for optimization. Unlike decision problems, optimization prob-

lems try to make a function of the inputs either large or small. This function is

called the objective function. Write opt to stand in for either max or min.

Definition 119
An optimization problem of the form

opt
x∈Ω

f(x),

has objective function f : Ω→ R.

When the objective function f is a linear function of x, and the state space Ω is

a subset of Rn
formed using linear constraints, then we call the problem a linear

program.

Definition 120
A linear program has the form

opt c · x, subject to {x : Ax ≤ b},

for fixed c, b ∈ Rn
.

If the values of the variables have to be integers (so Ω ⊆ Zn
), then we have an

integer program,

Definition 121
An integer program has the form

opt c · x, subject to {x : Ax ≤ b} and x ∈ Zn,

for fixed c, b ∈ Rn
.

In 1947, George Dantzig revolutionized Operations Research when he invented

the simplex method an algorithm for solving linear programs that ran very quickly

in practice. Later, versions of this method were developed that could be proven to

run in time polynomial in the input.

Integer programming is far more difficult. In fact, the famous conjecture of

whether or not problems whose solutions can be verified in polynomial time can

also be solved in polynomial time (also known as the P = NP question) would
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be solved in the affirmative if there was a polynomial time method for integer

programming problems.

32.1 Set cover as an integer programming problem

The question of the day is an example of a set cover problem.

Definition 122
The set cover problem consists of a universe set U and a set of subsets of U
called S1, . . . , Sn such that ∪ni=1Si = U . The goal is to find the smallest value of

k such that a subset of {S1, . . . , Sn} of size k has union U .

The set cover problem serves are a simple model of any situation where placing

resources, factories, or service buildings is needed to serve different areas of a

community or company. For example, in the question of the day, a company might

be building seven cell towers at specific sites to serve seven different regions of an

area.

The number of sets k needed to cover all n elements satisfies k ≤ n, but how
much smaller can k be? The problem is in NP because any answer (a subset of

{1, 2, . . . , n}) can be checked to be correct or incorrect in time polynomial in the

input size. It is also NP-complete. Karp showed in 1972 [8] that if this problem

could be solved in time polynomial in the input, then P = NP, which is what it

means to be NP-complete.

We can also write the problem as an integer program in the following way.

• Create indicator variables xi that are 0 if Si is not in the subset and 1 if Si is

in the subset.

• For each element u ∈ U , the sum of xi where u ∈ Si must be at least 1.

• We want to minimize the sum of the xi (that counts how many of the Si are

in the subset.)

207 271



Mark Huber Stochastic Operations Research

Example 48
In the question of the day, the integer program is

minx1 + x2 + x3 + x4 + x5 + x6

x1 + x4 ≥ 1 cover 1

x4 + x5 ≥ 1 cover 2

x2 + x4 ≥ 1 cover 3

x2 + x5 + x6 ≥ 1 cover 4

x3 + x6 ≥ 1 cover 5

x1 + x4 + x6 ≥ 1 cover 6

x5 + x7 ≥ 1 cover 7

(∀i)(0 ≤ xi ≤ 1)

(∀i)(xi ∈ Z)

Note that x1 + x4 ≥ 1 can be written as −x1 − x4 ≤ 1 so this still falls into the

integer programming definition.

32.2 Linear relaxation

If we remove constraints from an optimization problem, then the set of possible

solutions grows.

Definition 123
For a problem optx∈Ω f(x), let Ω′

be such that f : Ω′ → R is defined. Then if

Ω ⊂ Ω′
, call

opt
x∈Ω′

f(x)

a relaxation of the problem.

Note that because we have more choices for x, the solution of the relaxation will

always be better than that of the original problem.

Definition 124
For an integer program with constraint x ∈ Zn

, removing this constraint gives

the linear relaxation of the integer program.

The purpose of constructing a linear relaxation is to move from an integer

program which is difficult to solve to an LP that is fast to solve. The problem is

that the solution to the LP is not usually a solution to the IP, as it might contain

fractional values.
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32.3 Randomized rounding

To move from a solution x ∈ [0, 1]n to a solution y ∈ {0, 1}n, use the randomized
rounding approach.

Definition 125
For x ∈ [0, 1]n, let yi ∼ Bern(xi) be iid. Call y = (y1, . . . , yn) a randomly
rounded version of x.

Because yi is a {0, 1} random variable, E[yi] = xi. By linearity for any linear

objective function with c ∈ Rn
,

E[c · y] = c · x.

So on average, we are doing as well as the optimal solution to the LP relaxation.

But is the solution feasible for the IP?

Consider for example, the constraint:

x2 + x5 + x6 ≥ 1.

For y2 + y5 + y6 to equal 0, we must have y2 = y5 = y6 = 0. Because the yi were
chosen indpendently, this occurs with probability

(1− x2)(1− x5)(1− x6).

It is straightforward using a technique such as Lagrange multipliers to show that

this product is maximized when the xi are equal, so

P(y2 + y5 + y6 = 0) ≤ (1− 1/3)(1− 1/3)(1− 1/3) = (1− 1/3)3 ≤ exp(−1).

Suppose we repeat this rounding t times independently, and let wi be the maxi-

mum of the yi values over the t iterations. Then

P(w2 + w5 + w6 = 0) = P(y2 + y5 + y6 = 0)t ≤ exp(−t).

There are n constraints that could be unsatisfied, and so the union bound tells us

that the probability that any of the constraints is unsatisfied is at most n exp(−t).
LetX1, X2, . . . be the objective function for each trial of the randomized rounding.

Then E[Xi] ≤ t ·OPTLP ≤ t ·OPT, where OPTLP is the optimal objective function

for the LP relaxation, and OPT is the optimal objective function for the original IP.

Let T be the total number of steps until we find a feasible IP solution. Since we

run is independent, T is a geometric random variable with at least a 1− n exp(−t)
chance of success. So E[T ] ≤ 1/[1− n exp(−t)]. Also

E[XT ] ≤
T∑
i=1

E[Xi] ≤ E[T ]E[Xi] ≤
t

1− n exp(−t) · OPT
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by Wald’s identity.

In particular, if t = ln(n) + ln(ln(n)), then

E[XT ] ≤
ln(n) + ln(ln(n))

1− 1/ ln(n)
· OPT.

Other places randomized rounding can be used include:

• Facility location problems.

• Multicommodity flow problems.
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Time series
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Chapter 33
Forecasting

Question of the Day Consider the Dow Jones Industrial Average for the 27th

of March through the 5th of April, 2017:

Day DJIA Index

0 20550.98

1 20701.50

2 20659.32

3 20728.49

4 20663.22

5 20650.21

6 20689.24

7 20648.15

Summary

• A time series is a collection of random variables indexed by time.

• Forecasting is making an estimate of the value of a time series based

upon observations at previous times.

33.1 Predicting the future

A set of data values indexed by time is typically called a time series. One of the
goals of studying time series is to give a best guess prediction for the next data

point in the series based on the data up to the current time.

212 271



Mark Huber Stochastic Operations Research

There are two main methods for using data to predict the next data point:

Extrapolation and Causal Methods.

• Extrapolation includes methods such as moving averages and smoothing.

• Causal Methods typically build a statistical model of the data, such as using

linear regression.

Here, we will use yt to denote the actual value of the time series at time t. We

will use ŷt to denote an estimate of the time series.

33.2 The baseline model

The simplest model of a time series is the baseline mode, which assumes that there

is a baseline value for the data which is perturbed by a random error independently

at each step.

Model 1
The baseline model is

yi = b+ ϵi.

The simplest estimate for this model is an estimate of b using all the previous
data.

Estimate 1 (Average estimate)

For yi using the baseline model, for k ∈ {1, 2, . . .}

ŷt+k =
1

t

t∑
i=1

yi.

In words, this says that no matter how far into the future we wish to predict,

always just use the average of the values that we have up until the current time t.

Example 49
In the question of the day, we have

ŷ8 = ŷ9 = · · · = 20661.38. . . .

33.3 Moving averages

The problem with the average of all the data is that the base of the baseline model

b tends to drift over time. For instance, stock values or a player’s batting average

might improve with the economy or training, leading to a new value of b.
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A moving average operates by not averaging all the data, but only the last few

entries. We will use the parameter n to indicate how many of the last entries are

part of our prediction.

Estimate 2 (Moving average)

For parameter n, themoving average estimate for k ∈ {1, 2, . . .} is

ŷt+k =
1

n

n−1∑
i=0

yt−i.

Example 50
In the question of the day, if the moving average is of the last three periods

(n = 3), then the prediction for the fourth day is:

20550.98 + 20701.50 + 20659.32

3
,

and the prediction for the fifth day is

20701.50 + 20728.49 + 20663.22

3
,

and so on. That gives us a table:

Day Index Prediction Error

0 20550.98

1 20701.50

2 20659.32

3 20728.49 20637.27 91.22

4 20663.22 20696.44 -33.22

5 20650.21 20683.68 -33.47

6 20689.24 20680.64 8.60

7 20648.15 20667.56 -19.41

.

The last column of our table is the forecast error, the difference between the true

value and the predicted value.

Definition 126
The forecast error for ŷt predicting yt is

ei = yt − ŷt.
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33.4 Standard and mean absolute deviations

The choice of n determines the error in the prediction. We want the spread in the

error of prediction to be as small as possible.

A common way to measure the spread in a random variable X is to use the

standard deviation ofX , written SD(X). This is usually easy to compute, especially

when X is the sum of independent random variables. We use a method called

addition in quadrature to find the standard deviation.

Fact 47
If x1, X2, . . . , Xn are independent random variables, then

SD(X1 + · · ·+Xn) =
√

SD(X1)2 + · · ·+ SD(Xn)2.

While addition in quadrature is easy, it is sometimes the case that the expected

value of a random variable X can exist, but the standard deviation can be infinite!

Therefore, there is another deviation called the mean absolute deviation is often

used in assessing predictions.

Definition 127
The mean absolute deviation of a random variable X is

MAD(X) = E[|X − E(X)|].
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Example 51
For X ∼ Exp(λ), find MAD(X).

Answer The density of X is: fX(s) = λe−λsI(s ≥ 0). So the mean of the

random variable is

E(X) =

∫ ∞

−∞
sfX(s) ds = 1/λ.

By the Law of the Unconscious Statistician:

MAD(X) = E(|X − E(X)|)

=

∫ ∞

−∞
|s− 1/λ|fX(s) ds

=

∫ ∞

−∞
|s− 1/λ|λe−λsI(s ≥ 0) ds

=

∫ ∞

0

|s− 1/λ|λe−λs ds

=

∫ 1/λ

0

−(s− 1/λ)λe−λs ds

+

∫ ∞

1/λ

(s− 1/λ)λe−λs ds

=
2

e
· 1
λ
.

The advantage of the mean absolute deviation over the absolute deviation is that

having finite expectation is enough to give finite mean absolute deviation.

Fact 48
When E(X) exists and is finite, thenMAD(X) exists and is finite.

Some notes about the deviations.

1. MAD(X), SD(X),E(X) all have the same units.

2. Alternate notation: MD(X) = MAD(X)

3. MAD(cX) = |c|MAD(X)

4. If you do need to calculateMAD(X1 + · · ·Xn) for a particular distribution,
this can usually be estimated accurately using Monte Carlo.

Of course, for simple distributions, these values can be calculated directly
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Dist E(X) SD(X) MAD(X)

Exp(λ) 1/λ 1/λ (2/e)(1/λ)
Unif([a, b]) a+b

2
b−a√
12

b−a
4

N(µ, σ) µ σ σ · 2/√τ

33.5 Estimating mean absolute deviation

If E[Ei] = 0, then the mean absolute deviation of the forecast error is just E[|Ei|].
So we can get an estimate of MAD by taking a sample average of the absolute

errors of the predictions.

M̂AD =
1

t

t∑
i=1

|ei|.

Example 52
In the question of the day when n = 3:

M̂AD =
|91.22|+ | − 33.21|+ | − 33.46|+ |8.6|+ | − 19.41|

4
≈ 37.18.

A simple rule of thumb for choosing n for a large data set is to pick the value of

n that minimizes M̂AD.

• For stock data: n = 4 has M̂AD of 22.41

• n = 2 has M̂AD of 35.702.

• For n ∈ {2, 3, 4}, probably go with n = 4.
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Simple Exponential Smoothing

Question of the DayHow can we smooth out small fluctuations in time series

data?

Summary Simple exponential smoothing is a model where the effects of prior

history on the next forecast are dampened exponentially fast as you move

farther back in time.

The moving average estimate is intended to deal with the problem of a drifting

value of b in our baseline model. This approach is sharp: either a past element of

yt−i is included in the average, or it is discarded.

A smoother estimate includes all of the yt−i in the prediction ŷt, but does it so
that the further in the past we look, the less impact the data has on the prediction.

One such model is simple exponential smoothing, or SES. This model works by

using a convex linear combination of the most recent data value together with the

previous prediction. By adjusting the parameter of the combination, one can form

a prediction which relies heavily on the previous data, or more strongly on current

data.

Model 2 (Simple exponential smoothing (SES))

The SES estimate has one parameter α ∈ (0, 1). Given an estimate ŷt, the forecast
for k ∈ {1, 2, . . .} is

ŷt+k = αyt + (1− α)ŷt.
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Example 53
Suppose our previous prediction of the next data point was 54. When we saw

the actual data point, its value was 58. So if α = 0.2, then the prediction for the

next point would be

ŷt+1 = (0.2)(58) + (0.8)(54).

Some remarks:

• This style of prediction always uses all of the data, simply because ŷt−1

depends on all the data from time 1 up to t− 1, and then we also include the

data value yt.

• We have not said how to start the process if we do not already have a

prediction. Here we will use ŷ1 = 0 just to have something to work with.

34.1 Error view of SES

As earlier, let et denote the forecast error:

et = yt − ŷt.

Then we can write the SES estimate as

ŷt+k = αyt + (1− αŷt)

= ŷt + α(yt − ŷt)

= ŷt + αet.

In words, the new prediction is the old prediction plus a fraction of the error

from the old prediction.

If the old prediction had high error, then it was too low, so the new prediction is

higher. If the error was negative, that meant the old prediction was too high, and

so adding a fraction of the error makes it lower.
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Example 54
With α = 0.75 for stock data from before:

Day Index Prediction Error

0 20550.98

1 20701.50 20550.98 150.52

2 20659.32 20663.87 -4.55

3 20728.49 20660.46 68.03

4 20663.22 20711.48 -48.26

5 20650.21 20675.29 -25.08

6 20689.24 20656.48 32.76

7 20648.15 20681.05 -32.90

Here
ˆMAD = 51.72.

34.2 How to choose α
For moving averages, we choose the parameter n in order to minimize the estimate

of the mean absolute deviation. We can follow the same principle here, changing α
to minimize the the estimate of the mean absolute deviation.

In this case, α is a continuous random variable with possibly several local minima.

Rather than tackle this complicated optimization problem, a simple approach is

to only try α values that are integer multiples of 0.05 and keep the best. In the

question of the day, this is α = 0.75.
In practice α = 0.1, 0.3, or 0.5 are commonly used. A value of α > 0.5 indicates

that some other trend such as seasonality is present, because we are discounting

past values so severely.

34.3 The effect of SES on data

So why is this called exponential smoothing?

Consider the first few estimates:

ŷ1+k = αy1 + (1− α)ŷ0

= αy1

ŷ2+k = αy2 + (1− α)ŷ1

= αy2 + α(1− α)y1

ŷ3+k = αy3 + (1− α)ŷ2

= αy3 + α(1− α)y2 + α(1− α)2y3
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The data point i time steps before t + 1 is given a weight of α(1 − α)i. So all

of the previous data values are being used. Compare to the weights we have seen

earlier. Let r = 1− α. Then the weights are as follows.

yt yt−1 · · · yt−n+1 yt−n · · · y1

Average 1/t 1/t · · · 1/t 1/t · · · 1/t
Moving average 1/n 1/n · · · 1/n 0 · · · 0
SES α αr · · · αrn αrn+1 · · · αrt.

Note that weights in the first two rows add up to 1. The weights for SES add up

to slightly less than 1, but they add up to something very close to 1 as t gets large.
When α = 2/(n + 1), then r = 1 − α = 1 − 2/(n + 1), and rn+1 ≈ exp(−2).

So the SES estimate will be similar to the moving average estimate with n periods.

34.4 Holt’s method

Now suppose that are time series is not roughly constant, but that the baseline

itself has a linear trend.

Model 3
The linear trend model model is

yt = b+mt+ ϵt.

Holt [5] developed an extension of SES for the linear trend model which is known

as Holt’s method.
The idea is to create an estimate b̂t for b, ℓ̂t for yt (that is the level of the series,

and then predict using

ŷt+k = ℓ̂t + m̂tk.

To be precise, the method is as follows.
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Estimate 3 (Holt’s Method)

We have two parameters, α for the level, and β∗
for the trend. First we update

the level estimate based on the current data point and our previous prediction.

ℓ̂t = αyt + (1− α)(ℓ̂t−1 + m̂t−1).

Next, we update our trend estimate using the difference between level estimates

smoothed with the previous estimate.

m̂t = β∗(ℓ̂t − ℓ̂t−1) + (1− β∗)m̂t−1.

Then our prediction is

ŷt+k = ℓ̂t + km̂t.

Often the initial values m̂0 and ℓ̂t are drawn from previous data.

Example 55
Use Holt’s method to predict Blu-ray sales (1000’s) with α = 0.3, β = 0.1,
ℓ̂0 = 25.3 and m̂t = 7.4

Month Sales ℓ̂t m̂t Prediction et

25.3 7.4

1 32 32.49 7.379 32.7 -0.7000

2 40 39.9083 7.38293 39.869 0.1310

3 38 44.503861 7.1041931 47.29123 -9.291

4 56 52.92563787 7.235951477 51.6080541 4.391

5 67 62.21311254 7.441103797 60.16158935 6.838

Dealing with data that grows exponentially

Some data (incuding economic data) grows exponentially rather than linearly. Note

that Holt’s method can still be used: it is just that we must first taken the logarithm

to turn it into linear data.

For instance, with the model,

xt = abtνt,

taking the logarithm gives

ln(xt) = ln(a) + t ln(b) + ln(νt).

Set yt = ln(xt), and proceed as before.
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Seasonality

Holt added a linear trend to forecasting. Then his student Peter Winters extended

this model to incorporate seasonal effects [12]. This became known as Winters’
method or sometimes the Holt-Winters method.
To understand what is going on, consider sales of winter boots. Sales will

naturally be lower in the Spring and Summer, sharply increasing in the Fall, and

then declining a bit in actual Winter. These are seasonal effects.
Here we will use the term seasonality to indicate changing baseline levels over

a periodic set of times. For instance, traffic at a hotel might be highest during

weekdays because of business travelers, and then decreasing on weekends when

tourists make up the bulk of guests. This could also be handled by a seasonal model.

First consider a multiplicative model.

Model 4
A seasonal model is

yt = (b+mt)st + ϵt

Here the st are known parameters that repeat after c elements. So st+c = st. If
we are dealing with four seasons, then c = 4. If we are working with months then

c = 12, and if we are working with days of the week, then c = 7.
The Holt-Winters multiplicative forecast is then as follows.
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Estimate 4 (Holt-Winters model)

We will use m̂t as our estimate for the trend, b̂t as our estimate for the baseline,

and ŝt as our estimate for the seasonality factor. With three parameters, α, β∗
,

and γ, we update our estimates as follows.

b̂t = α
yt
st−c

+ (1− α)(b̂t−1 + m̂t−1)

m̂t = β∗(m̂t − m̂t−1) + (1− β∗)mt−1

ŝt = γ
yt

b̂t−1 + b̂t−1

+ (1− γ)ŝt−c

Again we are smoothing out the new data with our old estimates so that

This model incorporates three ideas.

1. Exponential smoothing.

2. A linear trend.

3. A seasonal multiplier.

Therefore, sometimes this estimate is known as triple exponential smoothing.

35.1 Working through an example

A classic example of this is data for thousands of air passengers in the United

States collected by Box and Jenkins [3]. These are contained in the variable

AirPassengers in R.

Problems
35.1 Suppose we believe that the number of tickets sold in the movie theater

depends on the day of the week. What is c, the number of time periods over

which the seasonal model cycles?

35.2 A coat company believes that the number of sales depends on the season of

the year. What is c, the number of time periods over which the seasonal

model cycles?
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Part VIII

Decision making for stochastic

processes
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Chapter 36
Marginal Analysis

Question of the Day Suppose that a shop can buy a toy for $4.00 from a

wholesaler. The toy sells in the shop for $6.25, but only toys that do not sell

can only be sold back to the wholesaler for $2.75. The shop has developed a

simple probabilistic model of sales. Let S be the number of sales.

i P(S = i)

1000 0.6

2000 0.3

3000 0.1

How many toys should the supplier buy?

Summary In marginal analysis, we look at the expected effect caused by

changing our decision by one unit. When dealing with a convex optimization

problem, this allows us to quickly find the optimal value. We then apply this

method to a simple inventory purchase/sell-back model.

36.1 Convex functions

Optimization problems are the easiest when we are dealing with a convex objective

function.
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Example 56
Consider the graph of the absolute function: f(x) = |x|, which looks like this:

Suppose that I pick any two points on this graph, and consider the line segment

that connects those two points. Then it always lies on or above the graph of the

original function. Here are three examples:

To describe this mathematically, we use the idea of a convex combination between
values.

Definition 128
Given a < b, the convex combination between a and b is a point λa+ (1− λ)b
where λ ∈ [0, 1].

Note that when λ = 0 the convex combination is just b, when λ = 1, the convex
combination is just a, and for λ = 1/2 it is the point exactly half way between a
and b.
A function f is convex if f applied to a convex combination between a and b is

smaller than the convex combination of f(a) and f(b).

Definition 129
A function f is convex if

(∀a < b)(∀λ ∈ [0, 1])(λf(a) + (1− λ)f(b) ≥ f(λa+ (1− λ)b)).

The nice thing about convex functions is that they are easy to optimize.
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Fact 49
For a convex function f , if (x∗, f(x∗)) is a local minimum, then it is also a global

minimum.

Sometimes this type of function is called convex up, because the function is going

up as it moves away from its minimal value.

If the function f happens to have two continuous derivatives (write f ∈ C2
)

then there is a simpler way to show that it is convex.

Fact 50
Let f be a function for which f ′′

is continuous. If f ′′ ≥ 0, then f is a convex

function.

36.2 Buy-back inventory model

Now consider the simple model of inventory given in the question of the day. A

retailer can buy items for a fixed cost per item from a wholesaler. Some, or all, or

none of the items are sold by the retailer, but if they are, then because the retailer

is selling for a higher price than they bought, the retailer will make a small amount

of money on each item sold.

If any items are not sold, then the retailer can sell back the remaining items to

the wholesaler at a cost lower than what they paid.

First some notation.

q = amount ordered by the retailer (vendor)

d = actual demand, that is, amount sold

c(d, q) = cost to the vendor when ordering q and selling d.

We can think of cost as the negative of utility.
In an ideal world, the vendor orders an amount equal to the demand. In this case,

the cost c(d, d) = 0. When q < d, then the vendor incurs a cost because the vendor

could have ordered more and sold more. When q > d, then the vendor incurs a

cost because the vendor should have ordered less.

Definition 130
When q < d, the lost income is called understocking cost. When q > d, the
utility lost through buy-back is called overstocking cost.

In the question of the day:

• Each overstocked toy costs the vendor $4.00− $2.75 = $1.25.

• Each understocked toy costs the vendor $6.25− $4.00 = $2.25.
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So if we graph the cost function c(q, d) for various values of d, it looks something

like this.

q

cost

d d′

2.25(d− q)

1.25(q − d)

2.25(d′ − q)

1.25(q − d′)

The problem, of course, is that the true demandD is a random variable, so we do

not know how much to order. But what we can ask for is to minimize the expected

cost.

min
q

E[c(D, q)].

Here is a nice fact about expected value of a convex function that helps us out

here.

Fact 51
If f(x, y) is a convex function in y for every value of x, then

E[f(X, y)]

is a convex function in y assuming the mean exists.

Proof. To show that it convex, let y1 < y2 and λ ∈ [0, 1]. Then

E[λf(X, y1) + (1− λ)f(X, y2)] =

∫
x

λf(x, y1) + (1− λ)f(x, y2) dX

≥
∫
x

f(x, λy1 + (1− λ)y2) dX

= E[f(X,λy1 + (1− λ)y2)].

That is exactly what it means for E[f(X, y)] to be convex in y!
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36.3 Marginal analysis

Finally we arrive at marginal analysis, which optimizes a function (with integer

inputs) by looking at the change in the objective function when we increase our

input by one.

In our case, we wish to minimize E[c(D, q)], so we consider what happens when
q gets increases by 1. Linearity of expectation gets us started.

E[c(D, q + 1)]− E[C(D, q)] = E[c(D, q + 1)− c(D, q)].

When we increase q by 1, we incur one unit of overstocking cost co if D ≤ q, and
we remove one unit of understocking cost cu if q < D. Hence

E[c(D, q + 1)]− E[C(D, q)] = coP(D ≤ q)− cuP(D > q)

= coP(D ≤ q)− cu(1− P(D ≤ q))

= −cu + (co + cu)P(D ≤ q).

A bit of algebra tells us that this will be negative if P(D ≤ q) ≥ cu/(co + cu),
and positive otherwise.

This buyback scheme historically applied to newsvendors, who after a strike

were given the right to sell back unsold issues to the publisher at the end of the

day. So the result goes by the name of the newsvendor theorem.

Theorem 14 (Newsvendor theorem)

Let cu be the cost of one unit of understock, co the cost of one unit of overstock,
D the random demand, and q∗ the optimal amount of inventory to order. Then

q∗ = inf

{
q : P(D ≤ q) ≥ cu

cu + co

}
= argmin

q
E[c(D, q)].

Recall that inf here stands for infimum, and means the smallest value such that

the inequality on the right hand side is satisfied.

This theorem sometimes appears as Littlewood’s Rule. Littlewood developed it

in the context of deciding how many seats in an airplane to devote for first class

versus coach passengers.
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Example 57
For the question of the day,

cu
co + cu

=
2.25

2.25 + 1.25
= 0.6428 . . . .

Looking at the demand distribution,

P(D ≤ q) =


0.6 q ∈ {1000, . . . , 1999}
0.9 q ∈ {2000, . . . , 2999}
1 q ∈ {3000, . . .}

Therefore we should purchase 2000 of the item, since this is the smallest amount

that makes P(D ≥ q) ≥ 0.6428 . . ..

Problems
36.1 The cost per unit when demand is higher than inventory is the

cost.

36.2 The cost per unit when inventory is higher than demand is the

cost.

36.3 True or false: the function f(x) = x2
is convex.

36.4 True or false: the function f(x) = x is convex.

36.5 Suppose that a Christmas tree seller can obtain trees for $13.50 and that

they sell in the local market for an average of $110.00. Any trees left over

after Christmas require payment of $5.15 for disposal. If demand is modeled

as a negative binomial distribution with parameters 1000 and 0.42, what is
the optimal number of trees for the lot to buy?

36.6 Amarketer is trying to decide howmany flyers to give away at a conference.

Each flyer costs 30 cents to produce, and each person at the conference

who receives a flyer buys product leading to 40 cents of profit. Excess flyers
are destroyed at no cost. The number of attendees at the conference are

modeled as uniform over {900, 1000, 1100, . . . , 1800}. How many flyers

should the marketer produce to maximize expected utility?
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Markov Decision Processes

Question of the Day A printer is either perfectly aligned, almost aligned,

somewhat aligned, or badly aligned. At the beginning of each month it is

possible to spend $1500 to realign the printer back to perfect alignment. In

perfect alignment the printer can be expected to earn $4000 during a month,

almost aligned $3000, somewhat aligned $2000, and badly aligned $1000. The
probability of moving from one alignment to another is shown in the figure

below. What policy should the owner of the printer use?

If no alignment is carried out, the transition probabilities are:

P A S B

0.2 0.2 0.4

0.8

0.8
0.6 1

If alignment is carried out, the move always goes back to the perfectly aligned

state with probability 1.

How should we measure the outcome of our decisions?
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Summary A discrete time process is aMarkov chain if the distribution of

Xt given X0, . . . , Xt−1 only depends on Xt−1.

AMarkov decision process allows someone to make a decision based on the

history of the process so that the distribution of the next state depends on the

current state and the decision made. Based on the decision and the state, an

expected reward is accrued.

A method for making decisions at each step is a policy. The value of a policy
for an MDP often uses long-term average reward or discounted reward.

37.1 Discrete time Markov chains

Markov chains are memoryless processes. In the case where the time is discrete (so

t ∈ {1, 2, . . .}), this leads to the following definition.

Definition 131
A discrete time stochastic process X0, X1, X2, . . . is a Markov chain if

(∀t)([Xt|Xt−1, Xt−2, . . . , X0] ∼ [Xt|Xt−1]).

Intuitively, a Markov chain at time t only depends on the previous value, and

knowing the rest of the history of the process does not further change the distribu-

tion.

Because the distribution of the state at time t only depends on the value of the

chain at time t− 1, we can completely describe a discrete time Markov chain using

transition probabilities.

Definition 132
For a Markov chain over a finite state space Ω, the transition probabilities are

p(j|i) = P(Xt = j|Xt−1 = i).

37.2 Adding decisions

Now we add a further wrinkle: at each time step, suppose that a decision can be

made that also affects the distribution at the next time step. This gives us a Markov
decision process.
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Definition 133
AMarkov decision process (MDP) consists of a

1. State space Ω which is finite.

2. Decision sets. for each i ∈ Ω, a set of decisions D(i).

3. Transition probabilities p(j|i, d) so that

P(∀i, j)(P(Xt+1 = j|Xt = i, d) = p(j|i, d).

4. Expected rewards. If we start in state i and make decision d, then we

receive expected reward ri,d.

For instance, in the question of the day we have:

Ω = {P,A, S,B}
(∀i ∈ Ω)(Di = {R,¬R}),

where R means realign the printer and ¬R means do not realign the printer. The

transition probabilities can then be broken up into two cases based on the decision

to align or not align. First, if the printer is not realigned at the beginning of each

step:

T̸=R =


0.8 0.2 0 0
0 0.8 0.2 0
0 0 0.6 0.4
0 0 0 1

 ,

If the printer is realigned at the beginning of each month, then it immediately

moves back to state P . From there, there is a 0.8 chance of staying in P and a 0.2
chance of moving to A. Hence the transition matrix becomes:

TR =


0.8 0.2 0 0
0.8 0.2 0 0
0.8 0.2 0 0
0.8 0.2 0 0

 .

So p(j|i, R) = TR(i, j) and p(j|i,¬R) = T¬R(i, j).
If we do not realign the printer, then the reward for starting in state P,A, S,B

is 4000, 3000, 2000, 1000 respectively. If we do realign the printer, then we spend

$1500, but reap the reward for being perfectly aligned, which is $4000. Hence
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R ¬R
P 2500 4000
A 2500 3000
S 2500 2000
B 2500 1000

37.3 Policies

A policy is a choice of what decision to make given the evolution of the MDP from

time 1 up to the current time.

Definition 134
A policy for an MDP is a distribution over decisions for each state i that is a
function of the entire history of the process.

In the context of MDP, a stationary policy is one that only looks at the current

state of the chain when deciding what to do next, and not the entire history.

Definition 135
A policy is stationary if it only depends on the current state.

(This should not be confused with the stationary distribution of the Markov

chain, which is a distribution such that if the current state is a draw from that

distribution, and a step in the Markov chain is taken, then the next state also comes

from that distribution.)

Evaluating policies

So how do we decide which policy is best? There are two main approaches.

1. Maximize the long-term average reward over time.

2. Maximize the discounted reward.

The average expected reward is the long term average over the rewards gained

by following a certain policy.

Definition 136
Given a policy δ, the long-term average reward is

E
(
lim
t→∞

rX1,d1 + rX2,d2 + · · ·+ rXt,dt

t

)
.
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The discounted reward recognizes that a reward now is worth more than a

reward that is to be given in the future. This could be the result of inflation, or just

the uncertainty of ever receiving the future reward. Given a parameter β ∈ (0, 1),
the discounted value of a reward r to be given k time steps in the future is only

βkr. Therefore, rewards given far in the future are less valuable than rewards given

today (k = 0).

Definition 137
Given a policy δ, the discounted reward is

Vδ = E

(
∞∑
t=1

βt−1rXt,dt

)
.

Here we will use the discounted reward as our goal.

Definition 138
For ∆ the set of all policies, say that δ∗ is an optimal policy if

(∀δ ∈ ∆)(Vδ∗ ≥ Vδ).

No matter which method we use to measure the infinite time horizon reward,

this is difficult because we have decisions to make at an infinite number of time

steps! Fortunately, we can simplify our problem considerably with an important

theorem given by Blackwell in 1962 [2].

Theorem 15 (Blackwell’s optimal stationary policy theorem)

If the values of the rewards are bounded, then there exists an optimal policy that

is stationary.

This is huge! It means that we do not need to examine the entire history of the

process, but only need consider the current state when making our decision.
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Chapter 38
Finding the optimal stationary policy

Question of the Day A printer is either perfectly aligned, almost aligned,

somewhat aligned, or badly aligned. At the beginning of each month it is

possible to spend $1500 to realign the printer back to perfect alignment. In

perfect alignment the printer can be expected to earn $4000 during a month,

almost aligned $3000, somewhat aligned $2000, and badly aligned $1000. The
probability of moving from one alignment to another is shown in the figure

below. What policy should the owner of the printer use?

If no alignment is carried out, the transition probabilities are:

P A S B

0.2 0.2 0.4

0.8

0.8
0.6 1

If alignment is carried out, the move always goes back to the perfectly aligned

state with probability 1.

What is the stationary policy with greatest average reward?

Summary For a Markov Decision Process, we can optimize the average reward

through linear programming. We can optimize the discounted utility through

value iteration.
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38.1 Stationary policies and Markov Decision Processes

Suppose {X1, X2, . . .} is an MDP that follows a stationary policy. That means that

when the current state is i, we choose our decision independently of the history. So

we can say that qi(d) is the probability that we make decision d given the current

state is i.
Recall that D(i) is the set of decisions that we can make when the current state

is i. LetDt be the decision that we actually make at time t. Then with our notation:

qi(d) = P(Dt = d|Xt = i).

Now consider P(Xt+1 = j|X1, X2, . . . , Xt = i). To find this, we break it into

pieces based on what decision we made. So

P(Xt+1 = j|X1, X2, . . . , Xt = i)

=
∑

d∈D(i)

P(Xt+1 = j,Dt = d|X1, . . . , Xt = i)

=
∑

d∈D(i)

P(Dt = d|X1, X2, . . . , Xt = i)P(Xt+1 = j|X1, . . . , Xt = i,Dt = d)

=
∑

d∈D(i)

qi(d)p(j|i, d).

Note that this right hand side does not depend on X1, . . . , Xt−1, the history of the

chain before Xt does not matter! That means that the process is a Markov chain.

Fact 52
A Markov Decision Process that follows a stationary policy is a Markov chain.

In order to understand the long-run behavior, let πi be the long-run amount

of time that we spend in state i, and πid be the long-run amount of time that we

spend in state i when we make decision d. Then because when we are in state i
the chance of making decision d is qi(d), we have

πid = πiqi(d).

For example, if we spend 5% of our time in state 4, and 20% of the time when

in state 4 we make decision 1, then (0.05)(0.20) = 0.01 of the time we will be in

state 4 and make decision 1 (on average).

From Markov chain theory, we know that the long-run amount of time that we

spend in a state must be in balance. Then means that at each step, πi amount of

probability leaves state i, and that probability must be replenished by probability
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flowing in. That is,

πi =
∑
j

P(Xt = j)P(Xt+1 = i|Xt = j)

=
∑
j

πiP(Xt+1 = i|Xt = j)

Note that we must make some decision at each step, so

πi =
∑

d∈D(i)

πid,

and

P(Xt+1 = i|Xt = j) =
∑

d∈D(j)

qi(d)p(j|i, d).

Putting this together gives∑
d∈D(i)

πid =
∑
i

πi

∑
d∈D(i)

qi(d)p(j|i, d)

=
∑
i

∑
d∈D(i)

πiqi(d)p(j|i, d)

=
∑
i

∑
d∈D(i)

πidp(j|i, d)

The final version of the equation only uses πid variables, which is important.

Definition 139
For a Markov Decision Process, the balance equations state that for every

i ∈ Ω, ∑
d∈D(i)

πid =
∑
i

∑
d∈D(i)

πidp(j|i, d).

38.2 Average reward

So how can we use this to optimize our average award? Recall that we are in state

i and make decision d, we gather reward rid. So our long-run average expected

reward can be found using the long-run portion of time spent in each state making

each decision:

lim
t→∞

rX1,D1 + · · ·+ rXt,Dt

t
=
∑
i

πidrid.
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(The formal proof of this is beyond the scope of this course, but utilizes a version

of the Ergodic Theorem.)

Because the πid are the long-run percentage of time spent in state i making

decisions d, when we sum over all states and decisions, they must add to 1.∑
i

∑
d∈D(i)

πid = 1.

And of course they must all be positive: πid ≥ 0.
Combining all of these constraints (the balance equations, the nonnegativity, the

sum to 1) with the objective function, we have created a linear program which we

can then optimize to find an optimal stationary policy.

Answering the question of the day

Let’s look at how this all plays out in the question of the day. Let the states P , A,
S, and B be represented by 1, 2, 3, and 4. Let the decision no align be decision 1,

and align be decision 2. Then the rewards rid form a matrix:

r =


R = 1 ¬R = 2

P = 1 2500 4000
A = 2 2500 3000
S = 3 2500 2000
B = 4 2500 1000


The objective function that we are trying to maximize is

2500π11 + 4000π12 + · · ·+ 2500π41 + 1000π42.

This maximization is subject to five linear constraints, plus they must all be non-

negative. First, the variables must add to 1.

π11 + · · ·+ π42 = 1

Next we have a balance equation for each of the states.

π11 + π12 = 0.8π11 + 0.8π12 + 0.8π21 + 0.8π31 + 0.8π41

π21 + π22 = 0.2π11 + 0.2π12 + 0.8π21 + 0.2π21 + 0.2π31 + 0.2π41

π31 + π32 = 0.2π22 + 0.6π32

π41 + π42 = 0.4π32 + π42

and all the variables must be nonnegative.
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Letting x = (π11, . . . , π41), the LP can be written as

max

(
2500 4000 2500 3000 2500 2000 2500 1000

)
x

subject to
1 1 1 1 1 1 1 1
0.2 0.2 −0.8 0 −0.8 0 −0.8 0
−0.2 −0.2 0.2 0.8 −0.2 0 −0.2 0
0 0 0 −0.2 1 0.4 0 0
0 0 0 0 0 −0.4 1 0

x =


1
0
0
0
0


x ≥ 0.

Solving the LP

R contains a package lpSolve that interfaces with the open source LP Solver to

solve linear and integer programs. To set up our problem, we first load the library,

installing the package if necessary.

# install.packages("lpSolve")
library(lpSolve)

Next we put the vector for the objective function, the matrix and vector for the

inequalities, and the type of inequality or equality into variables.

f.obj <- c(2500, 4000, 2500, 3000,
2500, 2000, 2500, 1000)

#f.obj <- c(500, 4000, 500, 3000,
# 500, 2000, 500, 1000)
f.con <- matrix(c(

1, 1, 1, 1, 1, 1, 1, 1,
0.2, 0.2, -0.8, 0, -0.8, 0, -0.8, 0,
-0.2, -0.2, 0.2, 0.8, -0.2, 0, -0.2, 0,
0, 0, 0, -0.2, 0.4, 1, 0, 0,
0, 0, 0, 0, 0, -0.4, 0, 1),
byrow = TRUE, nrow = 5)

f.dir <- rep("=", 5)
f.rhs <- c(1, 0, 0, 0, 0)

Now we are ready to solve the LP.
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soln <- lp("max", f.obj, f.con, f.dir, f.rhs)
soln$solution

## 0.00000000 0.66666667 0.08333333 0.16666667
## 0.08333333 0.00000000 0.00000000 0.00000000

soln

## Success: the objective function is 3583.333

So how do we figure out our policy from this? Recall that πid = πiqi(d) and
πi =

∑
d∈D(i) πid. Using this with

x∗ = (0, 2/3, 1/12, 1/6, 1/12, 0, 0, 0),

for instance, we get that π2 = 1/12 + 1/6 = 3/12 = 1/4. Overall, we get that

(π1, π2, π3, π4) = (2/3, 1/4, 1/12, 0, 0).

Now we can solve for the qi(d). For instance,

π21 = π2q2(1)⇒ 1/12 = (1/4)q2(1),

so q2(1) = 1/3.
Now we know q1(1)π1 = π11 = 5/6, so q1(1) = 1. Similarly, we can calculate

i d qi(d)

1 1 0
1 2 1
2 1 1/3
2 2 2/3
3 1 1
3 2 0.

q1(1) = 1, q1(2) = 0, q2(1) = 0, q2(2) = 1.

Therefore, the optimal policy is

State P Never realign

State A Realign with probability 1/3
State S Always realign

State B Always realign.

Note that last state will never be reached with this policy unless the printer starts

in that state, so we choose to realign at that point.

242 271



Part IX

Introduction to Quasi-Monte Carlo

243 271



Chapter 39
Reducing variance from simulation

Question of the Day Suppose that I wish to estimate E[U2
i ] where Ui are iid

Unif([0, 1]) random variables. Is there a better way than just using

U2
1 + · · ·+ U2

1

n
?

Since the earliest computers, generating random variables has been considered

one of the longest operations. Today it requires much more time to generate a

random variate than to calculation something like a cosine or natural logarithm,

while additions and multiplications are even faster.

So it is not unusual to try to get the most out of the random variables that we do

use. Recall that if we use

â =
m(U1) + · · ·+m(Un)

n

to estimate a = E[m(U)], then the standard deviation in the result will be

SD(m(U))/
√
n. So we can improve the estimate by making the standard deviation

smaller.

39.1 Antithetic random variables

One of the simplest (and yet very effective) approaches is whenever a random

variable Ui ∼ Unif([0, 1]) is used, to also use 1− Ui. This takes advantage of the

following simple fact.

Lemma 4
If U ∼ Unif([0, 1]), then 1− U ∼ Unif([0, 1]) as well.
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Definition 140
If U ∼ Unif([0, 1]), then the pair (U, 1−U) form antithetic random variables.

For the question of the day,

U2
1 + · · ·+ U2

1

n

and

(1− U1)
2 + · · ·+ (1− U1)

2

n

are both unbiased estimators of E[U2
1 ]. Therefore, their average is also an unbiased

estimator of E[U2
1 ].

Another way to view this is to let

Wi =
U2
i + (1− Ui)

2

2
.

Then E[Wi] = E[U2
i ].

Note that if U is larger, 1 − U is smaller. So averaging the antithetic pair

[U2 + (1−U)2]/2 gives a result that is closer to the true average than either alone.

We can analyze this precisely by considering the variance of the original estimate

versus the variance of the antithetic estimate.

Let Y = U2
i . Then the variance of Y is

E[Y 2]− E[Y ]2 = E[U4
i ]− E[U2

i ])
2

= (1/5)− (1/3)2

= 0.08888 . . .

On the other hand, the variance ofW is

E[W 2]− E[W ]2 = E[((U2 + (1− U)2)/2)2]− E[W ]2

= E[((2U2 − 2U + 1)/2)2]− E[W ]2

= (1/4)[2E[U2]− 2E[U ] + 1]− (1/3)2

= (1/4)[2/3]− (1/3)2

= (1/6)− (1/3)2

= 0.05555 . . .

Recall a formula from probability theory.
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Fact 53
For random variables X and Y with finite variance,

V((X + Y )/2) =
V(X) + V(Y )

2
+ Cov(X, Y ).

So ifX and Y have negative covariance (asU2
and (1−U)2 do) then the variance

of the average will be smaller. Otherwise, if the covariance is positive then the

result will be worse than before!

39.2 Quasi Monte Carlo

We can take this idea one step further by using quasi Monte Carlo methods.

Definition 141
A quasi Monte Carlo (QMC) uses random variables that are identically dis-

tributed but not independent to build faster algorithms for estimation.

Define the fractional part function as follows.

Definition 142
The fractional part function is defined as

fpf(x) = x− ⌊x⌋.

So for example, fpf(1.32) = 0.32, fpf(4) = 0, fpf(
√
2) = 0.4142 . . ..

A nice fact about uniforms over [0, 1] is that if you add any constant and take

the fractional part, you are left once more with a uniform over [0, 1].

Fact 54
If U ∼ Unif([0, 1]) and c ∈ R, then fpf(U + c) ∼ Unif([0, 1]).

Note that this means that for any n, and a single uniform U ∼ Unif([0, 1]),

U, fpf(U + 1/n), fpf(U + 2/n), . . . , fpf(U + (n− 1)/n),

are all uniform over [0, 1]!
We have taken a single random draw and managed to create n different uniforms

from them. This gives us an estimate of E[U1]:

âQMC =
n−1∑
i=0

fpf(U + i/n)2

n
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For example, if U = .72 . . . and n = 4, then our estimate would be

âQMC =
0.72 . . .2 + 0.97 . . .2 + 0.22 . . .2 + 0.47 . . .2

4
.

How well does this perform? It is much more difficult to analyze the error

in this method than the previous approaches. Remember that for the pure Monte

Carlo average, the error is

Θ(1/
√
n),

where the constant factor is SD(m(U)).
For the QMC approach, the error is

O

(
ln(n)√

n

)
which can be much smaller for large n.

Example 58
The basicMC approach forE[U2] gives a standard deviation of 0.08888 . . . divided
by the square root of n. By simulating the QMC approach 1000 times, we find

that the standard deviation for QMC is about as follows.

n standard deviation QMC standard deviation MC

10 0.0394 . . . 0.0281 . . .
100 0.00414 . . . 0.00888 . . .
1000 0.000414 . . . 0.00281 . . .

Note the standard deviation for MC goes down as

√
n while that of QMC goes

down by n. So for even moderate values of n, the QMC will be better. It will also

be faster, because while it does Θ(n) additions and subtractions, it only needs 1
uniform random draw, while MC uses n uniform draws.

Problems
39.1 If U ∼ Unif([0, 1]), then Y = − ln(U) ∼ Exp(1). LetW = − ln(1− U).

a) What is the distribution ofW ?

b) Find E[Y ] and V(Y ).

c) Find E[(W + Y )/2].

d) Find V((W + Y )/2).

39.2 Suppose for U ∼ Unif([0, 1]), Y =
√
U , and W =

√
1− U .
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a) What is the distribution ofW ?

b) Find E[Y ] and V(Y ).

c) Find E[(W + Y )/2].

d) Find V((W + Y )/2).
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Chapter 40
Worked problems

1.1 Suppose X ∼ Exp(0.1).

a) Find P(X > 10).

b) Find P(X ≤ 10).

Solution

a) This is

P(X > 10) =

∫ ∞

10

0.1 exp(−0.1x)I(x ≥ 0) dx = exp(−1)

= 0.3678 .

b) This is

P(X ≤ 10) =

∫ 1

0

00.1 exp(−0.1x)I(x ≥ 0) dx = 1− exp(−1)

= 0.6321 .

2.1 Suppose A occurs with probability 0.3, B occurs with probability 0.7, and
both occur with probability 0.2.

a) Find P(A|B).

b) Find P(B|A).

Solution

a) This will be

P(A|B) =
P(AB)

P(B)
=

0.2

0.7
=

2

7
= 0.2857. . .
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b) This will be

P(B|A) = P(AB)

P(B)
=

0.2

0.4
=

2

4
= 0.5000

2.3 Suppose D ∼ Unif({1, . . . , 100}).

a) Find P(D = 1|D ≤ 60).

b) Find P(D ≤ 60|D = 1).

Solution

a) By the property of conditional uniforms, [D|D ≤ 60] ∼
Unif({1, . . . , 60}), so 1/60 = 0.01666 . . . .

b) By the property of conditional uniforms, [D|D = 1] ∼ Unif({1}), so
1/1 = 1 .

2.5 Let X ∼ Exp(0.2).

a) What is the distribution of [X − 3|X > 3]?

b) What is P(X > 5|X > 3)?

Solution

a) By the memoryless property, this is Exp(0.2) .

b) By the survival function of exponentials, this if exp(−0.2 · (5− 3)) =
0.6703

2.7 Let (B1, B2, B3) be the first three draws from a stream of iid random vari-

ables where P(Bi = 1) = 0.3, P(Bi = 0) = 0.7 (we write Bi ∼ Bern(0.3)
for this Bernoulli distribution.)

a) What is P(B1 = 1, B2 = 1)?

b) Find P(B1 +B2 +B3 = 1).

Solution

a) Since the Bi are iid, and the first i stands for independent,

P(B1 = 1, B2 = 1) = P(B1 = 1)P(B2 = 1) = (0.3)(0.3) = 0.09000 .

3.1 Suppose three customers, a, b, and c arrive to a queue in that order.
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a) Under a FIFO queue discipline, in what order are the customers served?

b) Under a LIFO queue discipline, in what order are the customers served?

Solution

a) In FIFO, the customers are served in the order they arrive, so (a, b, c) .

b) LIFO, the last customer to arrive is served first, so (c, b, a) .

3.3 If the first three interarrival times areA1 = 0.4,A2 = 1.34, andA3 = 0.013,
what are the first three arrival times?

Solution

3.5 For interarrival times that are uniform over [0, 2] hours, what is the arrival
rate?

Solution

The average of X ∼ Unif([0, 2]) is just (0 + 2)/2 = 1. Remembering the

units, that makes the expected time between arrivals 1 hours, and so the

arrival rate is 1/[1 hour], or 1/hour .

4.1 Suppose E[X] = 4.2 and E[Y ] = 5.6. What is E[2X − 4Y ]?

Solution

Using linearity of expectations,

E[2X − 4Y ] = 2E[X]− 4E[Y ] = 2(4.2)− 4(5.6) = -14 .

4.3 Find the infimum of the following sets.

a) S1 = {1, 2, 3}.
b) S2 = {1, 2, 3, . . .}.
c) S3 = {x : x > 0, x < 5} =]0, 5[.

Solution

a) Since this set is finite, it is just the minimum value 1 .

b) Here 1 is a lower bound and is the largest lower bound, so 1 .

c) Here 0 is a lower bound (since for all x in S, x > 0) and any s > 0
bigger than 0 is not a lower bound since s/2 is smaller and in S1. So

0 .
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4.5 Say that interarrival times for aG/G/2 queue have density 20x3(1−x)I(x ∈
[0, 1]) when measured in minutes. Lower bound the expected number of

customers to arrive in the first ten minutes.

Solution

The average interarrival time is

E[Ai] =

∫ ∞

−∞
x20x3(1− x)I(x ∈ [0, 1]) dx

= 2/3,

hence λ = 3/2, and the lower bound is

(3/2)(10)− 1 = 14 .

5.1 If P is a Poisson process of rate 2.5 per second over [0,∞), what is the
chance that there are at most 3 points of P in the first 2 seconds?

Solution

Multiplying the rate (2.5 per second) times the length of the interval (2

seconds) gives 5. Hence the number of points of P in the first two seconds

is Poisson distributed with parameter 5. Therefore,

P(#(P ∩ [0, 2] ≤ 3) = P(#(P ∩ [0, 2] = 0) + P(#(P ∩ [0, 2] = 1) + P(#(P ∩ [0, 2] = 2) + P(#(P ∩ [0, 2] = 3)

= exp(−5)
[
50

0!
+

51

1!
+

52

2!
+

53

3!

]
≈ 0.2650 .

5.3 If the interarrival times between customers are modeled as iid Exp(8.4/s),
how many seconds (on average) are there between customer arrivals?

Solution

The average of an exponentially distributed random variable is one over

the rate parameter, so 1/[8.4/s] ≈ 0.1190 s .

5.5 For an M/G/2 queue of arrival rate λ, what is the distribution of the time

of the third customer arrival?

Solution

The first M tells us that the arrival distribution is λ. Hence the time of the

third arrival is the sum of three independent exponential random variables,

making it Erlang(3, λ).
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6.1 A queuing network’s overall rate is limited by what type of server?

Solution

Bottleneck.

6.3 An entry ramp to the freeway uses a stoplight that lets traffic on at a rate

of 2 cars every 3 seconds. If there are 24 cars waiting to get on the freeway,

on average how long are you going to have to wait?

Solution

Cars are entering the freeway at rate 2 per 3 seconds, or (2/3) per second.

Hence the time to enter the freeway will be 24/(2/3 per s) = 36 s .

6.5 In the previous problem, what are the bottleneck servers?

Solution

In part (a), the servers were in parallel, so both Server 1 and Server 2 are

bottlenecks.

In part (b), the servers were in series, so only Server 2 is the bottleneck.

6.7 What is the capacity of the network in the previous problem? [In other

words, what is the overall service rate of this network.]

Solution

Server 1 and 2 are in parallel, so their service rates add to give a 10 + 7 per

minute. Next is Server 3 in series, so the overall rate is the minimum of their

service rates, so min{17, 15} = 15. So the overall rate is 15 per minute.

7.1 The long term time customers spend waiting in a G/G/5 queue is 15 min-

utes, and the average long term queue length is 18.4.

a) What is the arrival rate to this queue?

b) What is the expected time between arrivals in this queue?

Solution

a) Here L = 18.4, and W = 15 minutes, so the arrival rate is

18.4

15 min

= 1.226 / min.

b) The expected time between arrivals is just the multiplicative inverse

of the arrival rate, or

15 min

18.4
= 0.8152 min
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7.3 Jobs arrive at a computer server at 11.4 per second. If the average number

of jobs waiting at any moment is 14.2, what is the average amount of time

a job waits before being served?

Solution

Here L = 14.2 and λ = 11.4 per second, so

W =
L

λ
=

14.2

11.4/s
= 1.245 sec .

8.1 The capacity utilization is usually denoted by what symbol?

Solution

ρ

8.3 Suppose a G/G/4 queue has arrival rate 4 per min, and the average service

time for a single server is 0.8 minutes. What is the capacity utilization for

the queue?

Solution

There are 4 servers, and each server has rate 1/0.8 minutes. So

ρ =
λ

µ · s =
4/min

4/0.8 min

= 0.8000

8.5 For a G/G/s queue with arrival rate 4.2 per second and the expected time

for a single server to serve a customer of 1.9 seconds, what is the maximum

number of servers we can have and still have less than 50% long run idle

time?

Solution

Here the service rate for a single server is 1/1.9 per second. Hence the idle

time is

1− ρ = 1− 4.2

s/1.9
≤ 0.5,

so

0.5 ≤ (4.2)(1.9)/s⇒ s ≤ (4.2)(1.9)/(0.5) = 15.96.

Hence there can be at most 15 servers and still have long run idle time

below 50%.

9.1 For an M/M/1 queue with arrival rate 3 per minute and service rate 5 per
minute, what is the steady state probability there are two or fewer jobs in

the system?
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Solution

The long term probability of i jobs in the system is (1− ρ)ρi. Here ρ = 3/5.
Therefore, the probability of getting 0, 1, or 2 jobs in the steady state is

0.4[1 + 0.6 + 0.62] = 0.7840 .

9.3 Draw a graphical model of the continuous time Markov chain that models

the M/M/3 queue with arrival rate λ and single server service rate µ.

Solution

When there is one job in the queue, one server is working and the service

rate is µ. When there are two jobs, two servers are working in parallel, and

the service rate is 2µ. When there are three jobs, three servers are working

in parallel, and the service rate is 3µ. So the CTMC looks like this.

0 1 2 3 · · ·

λ λ λ λ

3µ3µ2µµ

10.1 Consider data {2.3, 1.7, 2.3, 0.6}.

a) What is the sample average?

b) What is the sample standard deviation.

Solution

a) This is

2.3, 1.7, 2.3, 0.6

4
= 1.725 .

It can be found in R using

x <- c(2.3, 1.7, 2.3, 0.6)
mean(x)

## [1] 1.725

b) This can be found with
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sd(x)

## [1] 0.801561

So the answer is 0.8015 .

11.1 Suppose in the DES for the G/G/1 queue above, ta ∼ Unif([0, 4]) and
ts ∼ Unif([1, 2]) are both in terms of minutes

a) What is the arrival rate?

b) What is the service rate?

c) What is the capacity utilization?

Solution

a) The average of a uniform over an interval is the arithmetic average

of the endpoints. So (4 + 0)/2 = 2 minutes. Hence the arrival rate is

0.5000 per min .

b) Here the average service time is (1 + 2)/2 = 3/2 minutes. Therefore,

the service rate is 0.6666 . . . per min .

c) The capacity utilization is the arrival rate divided by the service rate,

so 0.3333 . . . .

12.1 When an event is executes, it can change the state, cancel existing events,

or events.

Solution

Executing events has the possibility of scheduling new events.

13.1 True or false: strings must always be enclosed in single quotes.

Solution

False, strings can be enclosed in either single or double quotes.

14.1 We can generate the same set of pseudorandom numbers every time in our

simulation by setting the at the beginning of the simulation.

Solution

You set the seed to generate the same random numbers each time.

15.1 Consider the event representation graph (ERG) for a simple G/G/s queue
where S is the number of servers available andQ is the number of customers

waiting for service to begin.
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RUN ENTER

Q← Q+ 1

START

S ← S − 1
Q← Q− 1

LEAVE

S ← S + 1

ta
o

(S > 0)

ts

o
(Q > 0)

ta

Now suppose we change the state change in the ENTER event. Instead of

Q← Q+1, supposeQ← Q+ I(Q < 10), where I(·) is the usual indicator
function. Explain what effect this would have on the queue being simulated.

Solution

When Q = 10, an arriving customer will not increase the length of the

queue by 1. The result is that the maximum queue length is 10.

17.1 True or false: higher utility is good.

Solution

True. Utility measures the desirability of a result, making a higher utility

result better.

17.3 True or false.

a) Decision variables are variables that you control.

b) State variables can be either variables that you control or variables

that you do not control.

Solution

a) True. This is the definition of decision variables.

b) False. State variables are always outside of your control.

17.5 Suppose the utility of outcome s1 is 4, while the utility of outcome s2 is 4.2.
Which outcome is preferred?

Solution

The second outcome has higher utility, so it is preferred.

17.6 Consider the following payoff matrix:
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a1 a2 a3 a4

Θ1 4 2 0 6

Θ2 2 6 0 5

Θ3 1 3 7 3

a) What decision should you make using the Maximin approach?

b) What decision should you make using the Maximax approach?

c) What decision should you make using the Laplace Principle of Insuffi-

cient Reason approach?

Solution

a) The vector of minima of the columns is (1, 2, 0, 3), so a4 should be

made here.

b) The vector maxima of the columns is (4, 6, 7, 6), so a3 should be

made here.

c) The sums of the columns are (7, 11, 7, 14), so using Laplace’s approach
a4 should be made.

17.7 Continuing with the payoff matrix from the the last problem.

a) What decision should you make using the Hurwicz principle? [For

every α ∈ [0, 1], state what decision is made.]

b) What decision should be made using the Savage minimum regret

principle?

Solution

a) Hurwicz depends on the value of α. The Hurwicz measure is

h = α
(
4 6 7 6

)
+ (1− α)

(
1 2 0 3

)
=
(
4α + 1 4α + 2 7α 3α + 3

)
.

Graphing over α ∈ [0, 1] gives the idea of which is best:
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0 1

6

3

For all α ∈ [0, 1] 4α + 1 < 4α + 2. Also 4α + 2 ≤ 3α + 3 since the
inequality holds at α = 0 and α = 1. That leaves 7α and 3α+3. Note

7α− (3α + 3) = 4α− 3

which is nonnegative when α ≥ 3/4 and nonpositive when α ≤ 3/4.
Hence the decision that should be made is:

a4 when α ∈ [0, 0.7500], and a3 when α ∈ [0.7500, 1].

b) To work out the Savage decision, remember that for a given state of

nature i and decision j, for payoff A(i, j), the regret is then

rij =

[
max
j′

A(i, j′)

]
− A(i, j).

In other words, it is the best decision payoff for that particular state

of nature minus the payoff actually achieved.

This gives the following matrix:

a1 a2 a3 a4

Θ1 2 4 6 0

Θ2 4 0 6 1

Θ3 6 4 0 4

The maximum of each column is(
6 4 6 4

)
so the decisions that minimize this maximum regret are a2 and a4 .
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17.8 Further research indicates that Θ1 and Θ2 each have a 20% chance of oc-

curring, while Θ3 has a 60% chance. What decision maximizes expected

utility?

Solution

The expected utility of the payoff matrix is

(0.2)(row 1)+ (0.2)(row 2)+ (0.6)(row 3) =
(
1.8 3.4 4.2 4.0

)
.

So once again, a3 emerges as the winner!

17.9 Consider the following payoff matrix

a1 a2 a3 a4

Θ1 -3 2 0 3

Θ2 2 6 -2 5

Θ3 1 3 5 3

a) What decision should you make using the Maximin approach?

b) What decision should you make using the Maximax approach?

c) What decision should you make using the Laplace Principle of Insuffi-

cient Reason approach?

d) What decision should you make with the Hurwicz Principle for α ∈
[0, 1]?

Solution

Not provided.

18.1 True or false: Regret is the negative of utility.

Solution

False. Regret is the difference between the payoff and the best possible

payoff given a strategy.

19.1 If u(x) =
√
x and the payoff isX ∼ Unif([0, 1]), what is the average utility?

Solution

2/3 ≈ 0.6666 .
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19.3 True or false: for u a utility function, 3u+ 6 gives the same preferences as

u.

Solution

True . Note that u(A) < u(B) if and only if 3u(A) + 6 < 3u(A) + 6, so
preferences are preserved by the affine function with positive coefficient

on the u.

19.5 Suppose f is an affine function with f((1, 1)) = (4, 2), f((1, 2)) = (5, 3).

a) Using the usual rules for scaling and adding vectors in R2
, what does

0.4(1, 1) + 0.6(1, 2) equal?

b) Find f((1, 1.6)).

Solution

a) Here

(0.4)(1, 1) + (0.6)(1, 2) = (1.000, 1.600) .

b) Let x1 = (1, 1) and x2 = (1, 2), p1 = 0.4 and p2 = 0.6. Then

p1x1 + p2x2 = (1, 1.6). So

f((1, 1.6)) = f(p1x1 + p2x2)

= p1f(x1) + p2f(x2)

= 0.4(4, 2) + 0.6(5, 3)

= (4.600, 2.600) .

20.1 A business is testing out a new wind turbine design. It would take

$10 000 000 to develop the design fully. If demand for green energy is good

(20%) the business stands to make 30 million dollars, but if it is medium

(50%) they will only make 12 million, and if it is bad (30%), they will only

make 2 million.

a) Draw the decision tree for this problem.

b) What decision should the business make?

Solution

a) As with most of these situations, there are several equivalent ways to

describe the decision tree. One possibility is:
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Design

Product

Don’t Design

Product

0

Good 20%

20

Med 50%

2

Bad 30%

-8

where the values are measured in millions of dollars.

b) Reducing the tree means taking the random outcome branch and

replacing it with its expected value:

(0.2)(20) + (0.5)(2) + (0.3)(−8) = 2.6

which gives

Design

Product

2.6

Don’t Design

Product

0

At this point the decision to Design the product results in more ex-

pected utility than not designing the product, so the optimal design is

to Design the product .

21.1 A survey question reads

Over 80% of U.K. members surveyed favored greater government expansion.
What percentage of U.K. voters do you believe also favored expansion?

This question is an example of what type of problem in psychological

decision making?
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Solution

This is an example of anchoring . In general, you should avoid having

numbers in your survey quesions unless absolutely necessary.

22.1 An investor believes there is a 30% chance of tariffs being enacted on

aluminum soon. If the tariffs are put in place, then purchasing stock in an

aluminum mining company will result in a $2 000 000 profit. if the tariffs

are not put in place, then the investor will lose $500 000.

a) Draw the decision tree for this problem.

b) Should the investor invest?

c) What is the EVPI for I = I(tariffs are enacted)?

Solution

a) The decision tree looks like this:

Invest

Don’t Invest

0

Tariffs 30%

$2 000 000

No Tariffs 70%

-$500 000

b) To determine that, we have to deconstruct the tree. The random node

subtree can be replaced with its expected utility:

(2 · 106)(0.3) + (−0.5 · 106)(0.7) = 250 000,

Since 250 000 > 0, the expected utility hypothesis decision is to

invest .

c) Now the random value comes first in the decision tree:
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Tariffs 30%

No Tariffs 70%

Invest

$2 000 000

Don’t Invest

0

Invest

-$500 000

Don’t Invest

0

For the top path we always invest, and for the bottom one we do not.

Hence the decision tree reduces to

$2 000 000

$0

Tariffs 30%

No Tariffs 70%

Therefore, the value of this tree is

(2 · 106)(0.3) = 0.6 · 106.

Hence the EVPI is

(0.6− 0.25) · 106 = $350 000 .

23.1 Suppose that X ∼ Unif({1, 2, 3, 4}), and two envelopes are presented, one

with X dollars, and one with 2X dollars. You are allowed to select one

envelope, look inside, and then switch if you’d like.

You decide to randomly choose a continuous uniform W over [0, 10]. If the
amount in the envelope is smaller than W , swtich, otherwise keep your

envelope. What is the chance that you end with the larger dollar amount?

Solution

There is a 1/2 chance that the money is in the smaller envelope, in which

case there are four values, each with probability 1/4. For instance, if you
see 3 dollars, then you switch if 3 ≤ W , which happens with probability

(10− 3)/(10− 0) = 0.7.
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Overall the probability of switching is

(0.25)(9/10) + (0.25)(8/10) + (0.25)(7/10) + (0.25)(6/10) = 0.75.

If you picked the largest envelope with values {2, 4, 6, 8}, the chance of
switching would be

(0.25)(8/10)+(0.25)(6/10)+(0.25)(4/10)+(0.25)(2/10) = 5/10 = 0.50.

Hence the chance of winning the bigger envelope with this strategy is:

(0.5)(0.75) + (0.5)(1− 0.5) = 0.6250 .

24.1 Suppose the economy either does well, medium, or poorly next quarter,

with probability 40%, 30%, and 30% respectively. Let X be the true answer.

Find the value ofm ∈ [0, 1]3 that maximizes E[Ui(m)], where

a) the utility function is

U1(m) = m(X),

b) or the utility function is

U2(m) = ln(m(X)).

Solution

a) HereU(m) = m(X), so pick the response with the highest probability,
put a 1 there. So the answer is

(1, 0, 0) .

b) Since U(m) = ln(m(X)), we use the real probabilities,

(0.4000, 0.3000, 0.3000) .

25.1 True or false: The Shannon entropy is always nonnegative.

Solution

True . The Shannon entropy is the sum of positive things (fX(s)) times

positive things (negative the natural logarithm of probabilities).
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25.3 What is the Shannon entropy of X ∼ Unif({0, 1})?
Solution

Using the formula for Shannon entropy:

H(X) = −E[log2(fX(X))]

= (1/2)(− log2(1/2)) + (1/2)(− log2(1/2))

= (1/2)(−(−1)) + (1/2)(−(−1))
= 1 .

25.5 Consider the code from {a, b, c} to {0, 01, 10} defined as

f(a) = 0, f(b) = 01, f(c) = 10.

Is f uniquely encodable?

Solution

No, since 01001 could have come from either acb or bab.

25.7 Suppose X1, . . . , Xn are iid Bern(0.7). For a given code/compression

scheme, what is the minimum number of bits on average needed to encode

a length n sequence?

Solution

Each bit has entropy −[0.7 ln(0.7) + 0.3 ln(0.3)] = 0.8812909. So by the

Shannon source coding Theorem, any code uses a minimum of 0.8812n
bits on average.

26.1 True or false: Decision theory can be used to solve two-person games.

Solution

False. Decision theory involves one person against a state of nature. We

assume that nature is random (unknown), but that it is not actively striving

against us!

27.1 Consider the game with entries

Player II

1 2

Player I

1 −5 5
2 5 −5
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What is the value of this game?

Solution

By inspected, the strategy (1/2, 1/2) for both Player I and II gives an ex-

pected payoff of 0, regardless of what the other player chooses. Hence the
value of this game is 0 .

28.1 Consider the following payoff matrix.

Player 2

a b c

Player 1

a (−3,−4) (−1, 2) (2,−3)
b (−1, 2) (3,−2) (0, 0)

Show that no pure strategies for the players forms a Nash equilibrium.

Solution

Look at each of the six pure strategies:

• From (a, a), Player 1 wants to move to b.

• From (a, b), Player 1 wants to move to b.

• From (a, c), Player 2 wants to move to b.

• From (b, a), Player 1 wants to move to b.

• From (b, b), Player 2 wants to move to a.

• From (b, a), Player 1 wants to move to a.

Therefore, none of the six pure strategies is also a Nash equilibrium.

31.1 True or false: A BPP algorithm might return the correct answer 1/2 of the
time.

Solution

False. A BPP algorithm has to be right at least 2/3 of the time.

35.1 Suppose we believe that the number of tickets sold in the movie theater

depends on the day of the week. What is c, the number of time periods over

which the seasonal model cycles?

Solution

Because we are dealing with days of the week, c = 7 .
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36.1 The cost per unit when demand is higher than inventory is the

cost.

Solution
understocking

36.3 True or false: the function f(x) = x2
is convex.

Solution
True. Since f(x) is twice differentiable, and [f(x)]′′ = 2 ≥ 0 for all x, this
is a convex function.

36.5 Suppose that a Christmas tree seller can obtain trees for $13.50 and that

they sell in the local market for an average of $110.00. Any trees left over

after Christmas require payment of $5.15 for disposal. If demand is modeled

as a negative binomial distribution with parameters 1000 and 0.42, what is
the optimal number of trees for the lot to buy?

Solution
The profit made from each tree is 110 − 13.50 = 96.50, while the cost

associated with an extra tree is 13.50 + 5.15 = 18.65. Hence co = 18.65
and cu = 96.50. Therefore, we want to order an amount q such that P(D ≤
q) = 96.50/(96.50 + 18.65) = 0.8380 . . .. Using qnbinom((96.50 /
(96.50 + 18.65), 1000, 0.42) gives 1437 , so that is how many

trees should be ordered.

39.1 If U ∼ Unif([0, 1]), then Y = − ln(U) ∼ Exp(1). LetW = − ln(1− U).

a) What is the distribution ofW ?

b) Find E[Y ] and V(Y ).

c) Find E[(W + Y )/2].

d) Find V((W + Y )/2).

Solution

a) Since U and 1−U have the same distribution, so do Y andW . Hence

W ∼ Exp(1) .

b) Mean and variance for a standard exponential random variable are

both 1, so E[Y ] = V(Y ) = 1 .

c) Since W and Y have the same distribution, they both have the same

mean of 1, and

E[(W + Y )/2] = (1 + 1)/2 = 1 .
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d) From the rules for variance,

V
(
W + Y

2

)
=

1

4
[V(W ) + V(Y ) + 2Cov(W,Y )].

Both W and Y have variance 1, so we only need their covariance.

Cov(W,Y ) = E[WY ]− E[W ]E[Y ]

= E[ln(U) ln(1− U)]− 1

=

∫ 1

0

ln(u) ln(1− u) du− 1

= −0.6944 . . .

Hence the overall variance is 0.1775 .
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