
Data Science Dwarves know…

Stitching for
Sampling

A new tool for high dimensional simulation

An unusual picture

The image to the right is of a
zero overlap Strauss process of
rate 100 over a region of area 1

with radius 0.15

Spatial Data
Part 01

Locating things with statistics

Spatial Data
Points
Usually in a subset of R^n

Modeling
Trees, cities, forest fires,
disease outbreaks

Random Strauss model
Points don’t like to be near
one another

01 02

03 04In model, points are placed
randomly into the region

For instance…
If this was locations of houses in

a village in the Shire, they are
farther apart than you would

expect if they were just dropped
uniformly at random

The simplest model

In Poisson point processes,
● points uniform over space
● points don’t interact

Poisson point process rate λ
Disjoint regions
Points in disjoint regions are
independent of each other

Average # of points
Mean # of points in region
proportional to λ and size of region

01

02

Two examples

λ = 100λ = 10

Repulsive point processes

In repulsive point processes, points like to
be farther apart

Use a density to accomplish this:

● Give low values when points close
● Give high values when points far

Two pairs overlap, weight = (1 / 2)^2 = 1 / 4

Repulsive point processes

In repulsive point processes, points like to
be farther apart

Use a density to accomplish this:

● Give low values when points close
● Give high values when points far

Zero pairs overlap, weight = (1 / 2)^0 = 1

The Strauss Process
Puts a density on a PPP

Has parameters R > 0 and γ in [0, 1]

Multiplies density by γ for every pair of
points within distance R of each other

λ = 100, R = 0.15, γ = 1 / 2

The Strauss Process as a density

The Hard Disk Model

When γ = 0 this is the hard disks model
where points cannot lie within distance R
of each other at all

Throughout, I’m going to stick to the hard
disks model because it’s easier to
visualize, and everything I say about it can
be generalized to the Strauss model

λ = 100, R = 0.15, γ = 0

Simulation
Part 02
Generating draws from distributions

Monte Carlo Methods

High dimensional models can be difficult
to study analytically

Monte Carlo Methods draw random
samples from the probabilistic models to
calculate various properties of the
distribution

● Expected value
● Variance
● Normalizing constant

Ω

Monte Carlo Methods for Spatial Models

For Spatial Models this means that we
need efficient methods to draw samples

from the model

Simulating Poisson point process
Decide # of points
Poisson distributed with parameter
equal to λ times the size of the region

Distribute points
Independently, uniformly draw points
over the region

01

02

Simulating from the Hard Disk Model

The first method that comes to mind is
acceptance rejection, a recursive
algorithm

AR()

1) Draw P ~ PPP(λ)
2) If no two points in P are within

distance R of each other return (P)
3) Else return(AR())

Simulating from the Hard Disk Model

The first method that comes to mind is
acceptance rejection, a recursive
algorithm

AR()

1) Draw P ~ PPP(λ)
2) If no two points in P are within

distance R of each other return (P)
3) Else return(AR())

Call AR()

Simulating from the Hard Disk Model

The first method that comes to mind is
acceptance rejection, a recursive
algorithm

AR()

1) Draw P ~ PPP(λ)
2) If no two points in P are within

distance R of each other return (P)
3) Else return(AR())

Call AR()

Simulating from the Hard Disk Model

The first method that comes to mind is
acceptance rejection, a recursive
algorithm

AR()

1) Draw P ~ PPP(λ)
2) If no two points in P are within

distance R of each other return (P)
3) Else return(AR())

Call AR()

Simulating from the Hard Disk Model

The first method that comes to mind is
acceptance rejection, a recursive
algorithm

AR()

1) Draw P ~ PPP(λ)
2) If no two points in P are within

distance R of each other return (P)
3) Else return(AR())

Return as output

Works well if area of region small

Can measure running time by (random)
number of calls to AR()

This is a geometrically distributed
random variable with mean value:

1 / probability of accepting

AR() AR() AR()

Three calls to AR()

Perfect Simulation Algorithm

A Perfect Simulation algorithm…

● Uses randomness
● Calls itself recursively
● Ends with probability 1
● Output comes exactly from target

distribution

Acceptance
Rejection

● Credited to John von
Neumann (1951)

● Didn’t claim to be the inventor
● Also didn’t actually bother to

prove it worked
● For 45 years, was the only

perfect simulation algorithm

Doesn’t work well if area of region large

For square of diagonal length R, if two or
more points then they must be within
distance R of each other

So chance of accepting is chance of one or
zero points appearing, which is

 R

Doesn’t work well if area of region large
Chance of accepting in large square at
most chance that every small square
accepts which is

So overall chance of accepting declines
exponentially in area of region

Stitching
Part 03

Recursion to the rescue

A key property of Hard Disks Model

Suppose the square is divided into two
rectangles of equal size

If original sample is a valid hard disk draw,
then so are both the sample on the left
hand side and the right hand side

The idea behind stitching

1) Recursively draw sample P_left from
left hand side and P_right from right
hand side

2) If P_left union P_right is a valid hard
disks draw, return it and quit

3) Otherwise start over from scratch
drawing the sample

The idea behind stitching

1) Recursively draw sample P_left from
left hand side and P_right from right
hand side

2) If P_left union P_right is a valid hard
disks draw, return it and quit

3) Otherwise start over from scratch
drawing the sample

The idea behind stitching

1) Recursively draw sample P_left from
left hand side and P_right from right
hand side

2) If P_left union P_right is a valid hard
disks draw, return it and quit

3) Otherwise start over from scratch
drawing the sample

Is this faster?
Yes!

Expected time to run basic acceptance rejection:

Expected time to run stitching

When to use
Improves running time as long as

Or more simply

If this doesn’t hold…
Then have

So basic Acceptance Rejection is fast in this case

Using Recursion

No need to stop at breaking
space in half once!

Recursion 2nd level

Use Stitching for left and right
hand side

Recursion 3rd level

Break each of those four pieces
into left and right hand side

When to stop
Stop dividing the space when

But we don’t know these values!

Solution: Try acceptance rejection once, otherwise use recursion

Final algorithm
Stitching_HDM(S)

1) Draw P ~ PPP(λ, S)
2) If P is a hard disk model, return P
3) Partition S into S_1 and S_2
4) Draw P_1 using Stitching_HDM(S_1)
5) Draw P_2 using Stitching_HDM(S_2)
6) Let Q be the union of P_1 and P_2
7) If Q is a hard disk model, return Q
8) Otherwise return Stitching_HDM(S)

Performance
Part 04

Does this really help?

Perfect simulation for Strauss
Perfect Simulation Timeline

● Propp and Wilson 1996
Coupling From the Past

● Kendall and Møller 1999
Dominated CFTP for Point Process

● Huber 2015
Birth-Death-Swap for Point Process

● Jerrum and Guo 2019
Partially Recursive Sampling for Point Process

CFTP based on
Markov chains

These jump chains make local
changes to a state, either

removed or adding a single point

(Dis/Ad) vantages of jump chains
Advantages

● When λ small relative to R^2, fast
● Critical Value of λ
● For λ below critical value, polynomial time

Disadvantages

● For λ above critical value, exponential
running time

(Dis/Ad) vantages of stitching
Advantages

● Runs for larger values of lambda
● Easier to code
● Exponential time based on boundary length

of split, rather than area like AR

Disadvantages

● Always exponential running time

Experimental running time

Experimental log running time

Why the
improvement?

Acceptance needed at length of
boundary between halves, not

the areas of the halves

Why the
improvement?

Acceptance easier at boundary
when both sides already have

fewer points than in PPP

Correctness
Part 05

How do we know this works?

Fundamental Theorem of Perfect Simulation
Suppose a probabilistic recursive
algorithm has two properties:

1) It is locally correct.

2) It terminates with probability 1.

Then it is globally correct.

01
02

Can use recursion, but must terminate with
probability 1

(Recursion)
Call 2
terminates

Call 1

(Recursion)
Call 3

(Recursion)
Call 4
terminates

(Recursion)
Call 5
terminates

Locally correct

A recursive algorithm is locally correct if
when you replace recursive calls with
an oracle that comes directly from the

target distribution, the overall
algorithm is correct.

Oracles are always correct
Oracle gives
answer

Call 1

Oracle gives
answer

Globally correct

A recursive algorithm is globally correct
if its final output comes from the target

distribution

Local correction for stitching HDM
Stitching_HDM(S)

1) Draw P ~ PPP(λ, S)
2) If P is a hard disk model, return P
3) Partition S into S_1 and S_2
4) Draw P_1 using Stitching_HDM(S_1)
5) Draw P_2 using Stitching_HDM(S_2)
6) Let Q be the union of P_1 and P_2
7) If Q is a hard disk model, return Q
8) Otherwise return Stitching_HDM(S)

Stitching_HDM_oracle(S)

1) Draw P ~ PPP(λ, S)
2) If P is a hard disk model, return P
3) Partition S into S_1 and S_2
4) Draw P_1 from HDM over S_1
5) Draw P_2 from HDM over S_2
6) Let Q be the union of P_1 and P_2
7) If Q is a hard disk model, return Q
8) Otherwise return from HDM over S

Note: HDM = Hard Disks Model

A nice property of
uniforms

Suppose
● B is a subset of A
● X is uniform over A
● X happens to fall into B

Then X is uniform over B
A

B

X

Correctness of oracle version
Property of uniforms
● Suppose X ~ Unif(A)
● For B a subset of A, suppose X is in B
● Then [X | X in B] ~ Unif(B)

So P_1 union P_2 a valid HDM means that
their union is uniform over valid HDM

Stitching_HDM_oracle(S)

1) Draw P ~ PPP(λ, S)
2) If P is a hard disk model, return P
3) Partition S into S_1 and S_2
4) Draw P_1 from HDM over S_1
5) Draw P_2 from HDM over S_2
6) Let Q be the union of P_1 and P_2
7) If Q is a hard disk model, return Q
8) Otherwise return from HDM over S

Note: HDM = Hard Disks Model

FTPS Proof Outline

01
02

Make truncated version of algorithm that stops after n
recursions and uses oracles thereafter

Through local correctness + induction, truncated version
has correct output

03 Since original algorithm terminates with probability 1, as n goes to
infinity, truncated alg output equals original alg output

Last Thoughts
Part 06

What is the takeaway?

Stitching can be done for densities as well!
Partition the state space

Factor the density

Gives a way to do Strauss process for γ > 0

When to use

When to use Stitching?

● Designed for Point Processes

● Broader application: works whenever density product
of three parts, two of which look like original problem

● Can be effective in situation where traditional Markov
chain methods too slow

https://arxiv.org/abs/2012.08665

https://arxiv.org/abs/2012.08665

Want to learn more?

Free to download
Probability textbooks

Held by the Library

http://www.markhuberdatascience.org/

https://www.markhuberdatascience.org/

Thanks for
watching!

CREDITS: This presentation template was created by Slidesgo,
including icons by Flaticon, and infographics & images by Freepik

Please keep this slide for attribution

Thanks!
Does anyone have any questions?

youremail@freepik.com
+91 620 421 838

yourcompany.com

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

