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Always label your axes







The image to the right is of a
zero overlap Strauss process of
rate 100 over aregion of area 1

with radius 0.15
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Usually in a subset of R*n

g%m«lom

In model, points are placed
randomly into the region

0%
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Trees, cities, forest fires,
disease outbreaks

Strauss medel

Points don't like to be near
one another




If this was locations of houses in
avillage in the Shire, they are
farther apart than you would

expect if they were just dropped

uniformly at random
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2% For instance...
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In Poisson point processes,
e points uniform over space
e pointsdon’tinteract

%%; AThe simplest model
:




& oisson poin] process vale A

Disjeint vegions
Points in disjoint regions are
independent of each other

%kf’aje # cj yoinTS

Mean # of points in region
proportional to A and size of region






In repulsive point processes, points like to %

be farther apart

Use a density to accomplish this:

e Give low values when points close
e Give high values when points far

S



In repulsive point processes, points like to %

be farther apart

Use a density to accomplish this:

e Give low values when points close
e Give high values when points far
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A=100,R=0.15,y=1/2

Puts a density on a PPP
Has parameters R >0andyin [0, 1]

Multiplies density by y for every pair of
points within distance R of each other






When y = 0 this is the hard disks model %
N

where points cannot lie within distance R

of each other at all
Throughout, I'm going to stick to the hard

disks model because it’s easier to
visualize, and everything | say about it can }

be generalized to the Strauss model
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Monte Carlo Methods draw random
samples from the probabilistic models to
calculate various properties of the
distribution

High dimensional models can be difficult %
to study analytically o

e Expected value
e Variance
e Normalizing constant
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For Spatial Models this means that we
need efficient methods to draw samples
from the model
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Simudaling $eisson point process

@ {Deci&e % @(Jooints X ~ Pois(u) %
: 2N\

Poisson distributed with parameter .
equal to A times the size of the region P(X =1) = exp(—p) =

Qistrifule Poinls

Independently, uniformly draw points
over the region
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The first method that comes to mind is
acceptance rejection, a recursive
algorithm

AR()

1) Draw P~ PPP(A)
2) If notwo points in P are within

distance R of each other return (P)
3) Elsereturn(AR())
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The first method that comes to mind is
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algorithm
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1) Draw P~ PPP(A)
2) If notwo points in P are within

distance R of each other return (P)
3) Elsereturn(AR())
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The first method that comes to mind is
) acceptance rejection, a recursive
algorithm

—~ AR()

3) Elsereturn(AR())

§
1) Draw P ~PPP(A)
Return as output 2) If.no two points in P are within
distance R of each other return (P)




AR() —» AR() —* AR()

Three calls to AR()

Can measure running time by (random)
number of calls to AR()

This is a geometrically distributed

§
random variable with mean value:
1/ probability of accepting




Perfect Simulation Flgerithm

A Perfect Simulation algorithm...

Uses randomness

Calls itself recursively

Ends with probability 1

Output comes exactly from target
distribution



Credited to John von
Neumann (1951)
Didn’t claim to be the inventor
Also didn’t actually bother to
prove it worked

For 45 years, was the only
perfect simulation algorithm
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For square of diagonal length R, if two or
more points then they must be within
distance R of each other

So chance of accepting is chance of one or
zero points appearing, which is



accepts which is

2 24 100
exp( )\R—> [ )\R—]

So overall chance of accepting declines
exponentially in area of region

Chance of accepting in large square at %
most chance that every small square
2N
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Suppose the square is divided into two

then so are both the sample on the left
hand side and the right hand side

QX Q rectangles of equal size
%ﬁ > Q Q Q If original sample is a valid hard disk draw,




1)

2)

3)

Recursively draw sample P_left from
left hand side and P_right from right
hand side

If P_left union P_right is a valid hard

disks draw, return it and quit

Otherwise start over from scratch

drawing the sample
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2)

3)

Recursively draw sample P_left from
left hand side and P_right from right
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If P_left union P_right is a valid hard

disks draw, return it and quit

Otherwise start over from scratch

drawing the sample




4s this faster?

Yes!

Expected time to run basic acceptance rejection:

i

Pleft Pright Pstitch

k Il 1

I |

Pright | Pstitch
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Improves running time as long as

1 1 1
>

- |
Pleft Pright Pleft Pright

Or more simply

1 Z Pleft ol Pright




%‘ t&s doesnl 6914.,,

ik
Dleft = 5% Pright =

Then have

So basic Acceptance Rejection is fast in this case

1
2




No need to stop at breaking
space in half once!




Recursion Ind level

Use Stitching for left and right
hand side




Recursion 3rd level

%i Break each of those four pieces
Zﬁ into left and right hand side




Stop dividing the space when

1

Dleft, = 5% Pright =

But we don’t know these values!

Solution: Try acceptance rejection once, otherwise use recursion

.

2



Stitching_HDM(S)

1)
2)
3)
4)
5)
6)
7)
8)

Draw P ~ PPP(A, S)

If Pis a hard disk model, return P
PartitionSintoS_1and S 2

Draw P_1 using Stitching_HDM(S_1)
Draw P_2 using Stitching_HDM(S_2)
Let Q be theunionof P.1and P_2

If Qis a hard disk model, return Q
Otherwise return Stitching_ HDM(S)
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Perfect simulation for Strwess

Perfect Simulation Timeline

Coupling From the Past

e Kendall and Mgller 1999
Dominated CFTP for Point Process

e Huber 2015
Birth-Death-Swap for Point Process

e Jerrumand Guo 2019

Partially Recursive Sampling for Point Process

:
X




These jump chains make local
changes to a state, either
removed or adding a single point




Advantages

e When A small relative to R*2, fast
e Critical Value of A
e For A below critical value, polynomial time

Disadvantages

e For A above critical value, exponential
running time



Advantages

e Runsfor larger values of lambda

e Easiertocode

e Exponential time based on boundary length
of split, rather than area like AR

Disadvantages

e Always exponential running time



401

301

titrials

201

101

type

W_—-ars

== prs




log(titrials)

©xperimental log vining time

251
0.01
-2.57

-5.01
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Acceptance needed at length of
boundary between halves, not
the areas of the halves
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Acceptance easier at boundary
when both sides already have
fewer points thanin PPP
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Suppose a probabilistic recursive

;%; algorithm has two properties:
5

@ It is locally correct.

@ It terminates with probability 1.

§
%@ Then it is globally correct. E
M = < : :\w X &ﬁ@




(Pan uSe vecuySion, ful mMust lerminale wﬂ:ﬂ,
Propapility 1

X (Recursion)
@ cal2
terminates
callt @
(Recursion)
@ cals
terminates
® (Recursion)
Call 3
(Recursion)
@ calis
terminates




A recursive algorithm is locally correct if
when you replace recursive calls with
an oracle that comes directly from the

target distribution, the overall
algorithm is correct.



callt @

. Oracle gives

. Oracle gives




A recursive algorithm is globally correct
if its final output comes from the target
distribution



Stitching_HDM(S)

Draw P ~ PPP(A, S)

If Pis a hard disk model, return P
PartitionSintoS_1and S 2

Draw P_1 using Stitching_HDM(S_1)
Draw P_2 using Stitching_HDM(S_2)
Let Q be theunionof P.1and P_2

If Qis a hard disk model, return Q
Otherwise return Stitching_ HDM(S)

LSO UT vl

Stitching_HDM _oracle(S)

1)
2)
3)
4)
5)
6)
7)
8)

Draw P ~ PPP(A, S)

If Pis a hard disk model, return P
PartitionSintoS_1and S 2

Draw P_1 fromHDMover S_1
Draw P_2 from HDM over S_2

Let Q be theunionof P_.1and P_2

If Qis a hard disk model, return Q
Otherwise return from HDM over S




e XhappenstofallintoB

e Bisasubsetof A
Zﬁ e Xisuniformover A

Then Xis uniform over B

%ﬁ%ﬁm PEa N




Corvectness of oracle VerSion

X Property of uniforms
e Suppose X ~ Unif(A)
2& e For B asubset of A, suppose XisinB

e Then[X|XinB]~ Unif(B)

So P_1 union P_2 avalid HDM means that
their union is uniform over valid HDM

1)
2)
3)
4)
5)
6)
7)
8)

Stitching_HDM _oracle(S)

Draw P ~ PPP(A, S)

If Pis a hard disk model, return P
PartitionSintoS_1and S 2

Draw P_1 fromHDMover S_1
Draw P_2 from HDM over S_2

Let Q be theunionof P_.1and P_2

If Qis a hard disk model, return Q
Otherwise return from HDM over S




Make truncated version of algorithm that stops after n
recursions and uses oracles thereafter

Through local correctness + induction, truncated version
has correct output

Since original algorithm terminates with probability 1, as n goes to
infinity, truncated alg output equals original alg output



What is the takeaway?
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Partition the state space

£
% 5 — SlES S EES )
X

Factor the density

%
F(S) = f(51)(52) fstiten (51, 52) }
%@ Gives a way to do Strauss process fory >0 »ﬁ@




When to use Stitching?

e Designed for Point Processes

e Broader application: works whenever density product
of three parts, two of which look like original problem

e Can be effective in situation where traditional Markov
chain methods too slow



https://arxiv.org/abs/2012.08665
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Perfect Simulation

Maork L, Huber
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Held by the Library


https://www.markhuberdatascience.org/
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Does anyone have any questions?
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+91 620421838
yourcompany.com
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CREDITS: This presentation template was created by Slidesgo,
including icons by Flaticon, and infographics & images by Freepik

Please keep this slide for attribution
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http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

