

Always label your axes

5, 9825

Stitching for Sampling

A new tool for high dimensional simulation

An unusual picture

The image to the right is of a zero overlap Strauss process of rate 100 over a region of area 1 with radius 0.15

Usually in a subset of Rⁿ

Modeling Trees, cities, forest fires, disease outbreaks

Random In model, points are placed randomly into the region

Strauss model Points don't like to be near one another

For instance...

If this was locations of houses in a village in the Shire, they are farther apart than you would expect if they were just dropped uniformly at random

The simplest model

In Poisson point processes,

- points uniform over space
- points don't interact

Poisson point process rate λ

Disjoint regions Points in disjoint regions are independent of each other

Average # of points

Mean # of points in region proportional to λ and size of region

Repulsive point processes

Two pairs overlap, weight = $(1/2)^2 = 1/4$

In repulsive point processes, points like to be farther apart

Use a density to accomplish this:

- Give low values when points close
- Give high values when points far

Repulsive point processes

Zero pairs overlap, weight = $(1/2)^0 = 1$

In repulsive point processes, points like to be farther apart

Use a density to accomplish this:

- Give low values when points close
- Give high values when points far

The Strauss Process

Puts a density on a PPP

Has parameters R > 0 and γ in [0, 1]

Multiplies density by γ for every pair of points within distance *R* of each other

 $\lambda = 100, R = 0.15, \gamma = 1/2$

The Strauss Process as a density

8 500800

m(P) = # pairs of points within distance R

$$f(P) = \gamma^{m(P)}$$

So BEES

The Hard Disk Model

 $\lambda = 100, R = 0.15, \gamma = 0$

When $\gamma = 0$ this is the hard disks model where points cannot lie within distance R of each other at all

Throughout, I'm going to stick to the hard disks model because it's easier to visualize, and everything I say about it can be generalized to the Strauss model

Monte Carlo Methods

High dimensional models can be difficult to study analytically

Monte Carlo Methods draw random samples from the probabilistic models to calculate various properties of the distribution

- Expected value
- Variance
- Normalizing constant

Monte Carlo Methods for Spatial Models

For Spatial Models this means that we need efficient methods to draw samples from the model

Simulating Poisson point process

Decide # of points

Poisson distributed with parameter equal to λ times the size of the region

 $X \sim \mathsf{Pois}(\mu)$ $\mathbb{P}(X = i) = \exp(-\mu)\frac{\mu^{i}}{i!}$

Distribute points Independently, uniformly draw points over the region

The first method that comes to mind is acceptance rejection, a recursive algorithm

AR()

- 1) Draw $P \sim PPP(\lambda)$
- 2) If no two points in P are within distance R of each other return (P)
- 3) Else return(**AR**())

Call AR()

The first method that comes to mind is acceptance rejection, a recursive algorithm

AR()

1) Draw $P \sim PPP(\lambda)$

- 2) If no two points in P are within distance R of each other return (P)
- 3) Else return(AR())

Call AR()

The first method that comes to mind is acceptance rejection, a recursive algorithm

AR()

- 1) Draw $P \sim PPP(\lambda)$
- 2) If no two points in P are within distance R of each other return (P)
- 3) Else return(**AR**())

Call AR()

The first method that comes to mind is acceptance rejection, a recursive algorithm

AR()

1) Draw $P \sim PPP(\lambda)$

- 2) If no two points in P are within distance R of each other return (P)
- 3) Else return(**AR**())

Return as output

The first method that comes to mind is acceptance rejection, a recursive algorithm

AR()

- 1) Draw $P \sim PPP(\lambda)$
- 2) If no two points in P are within distance R of each other return (P)
- 3) Else return(**AR**())

Works well if area of region small

AR ()		AR ()		AR ()
--------------	--	--------------	--	--------------

Three calls to AR()

Can measure running time by (random) number of calls to **AR**()

This is a geometrically distributed random variable with mean value:

1 / probability of accepting

Perfect Simulation Algorithm

A Perfect Simulation algorithm...

- Uses randomness
- Calls itself recursively
- Ends with probability 1
- Output comes exactly from target distribution

- Credited to John von Neumann (1951)
- Didn't claim to be the inventor
- Also didn't actually bother to prove it worked
- For 45 years, was the only perfect simulation algorithm

Doesn't work well if area of region large

For square of diagonal length *R*, if two or more points then they must be within distance *R* of each other

So chance of accepting is chance of one or zero points appearing, which is

 $\exp\left(-\lambda\frac{R^2}{2}\right)\left[1+\lambda\frac{R^2}{2}\right] < 1$

Doesn't work well if area of region large

Chance of accepting in large square at most chance that every small square accepts which is

$$\exp\left(-\lambda\frac{R^2}{2}\right)\left[1+\lambda\frac{R^2}{2}\right]^{100}$$

So overall chance of accepting declines exponentially in *area* of region

A key property of Hard Disks Model

Suppose the square is divided into two rectangles of equal size

If original sample is a valid hard disk draw, then so are both the sample on the left hand side and the right hand side

The idea behind stitching

- Recursively draw sample P_left from left hand side and P_right from right hand side
- 2) If P_left union P_right is a valid hard disks draw, return it and quit
- 3) Otherwise start over from scratch drawing the sample

The idea behind stitching

- 1) Recursively draw sample P_left from left hand side and P_right from right hand side
- 2) If P_left union P_right is a valid hard disks draw, return it and quit
- 3) Otherwise start over from scratch drawing the sample

The idea behind stitching

- 1) Recursively draw sample P_left from left hand side and P_right from right hand side
- 2) If P_left union P_right is a valid hard disks draw, return it and quit
- 3) Otherwise start over from scratch drawing the sample

Is this faster?

 $\mathbb{E}(T_{\text{stitch}}) = \left\lfloor \frac{\mathbf{I}}{p_{\text{left}}} + \frac{\mathbf{I}}{p_{\text{right}}} \right\rfloor \frac{1}{p_{\text{stitch}}}$

5 9825

Yes!

Expected time to run basic acceptance rejection:

 $\mathbb{E}(T)$ =

 $p_{\text{left}} p_{\text{right}} p_{\text{stitch}}$

Expected time to run stitching

When to use

Improves running time as long as

 $p_{\text{left}} p_{\text{right}}$ p_{left} p_{right}

Or more simply

 $1 \ge p_{\text{left}} + p_{\text{right}}$

Spar 2

If this doesn't hold...

Then have

 $p_{\text{left}} \ge \frac{1}{2}, \ p_{\text{right}} \ge \frac{1}{2}$

So basic Acceptance Rejection is fast in this case

cho

s gezz

No need to stop at breaking space in half once!

888 8800SB

Use Stitching for left and right hand side

s glos

Break each of those four pieces into left and right hand side

G.S.

When to stop

Stop dividing the space when

 $p_{\text{left}} \ge \frac{1}{2}, \ p_{\text{right}} \ge \frac{1}{2}$

But we don't know these values!

Solution: Try acceptance rejection once, otherwise use recursion

Final algorithm

Stitching_HDM(S)

- 1) Draw $P \sim PPP(\lambda, S)$
- 2) If P is a hard disk model, return P
- 3) Partition *S* into *S*_1 and *S*_2
- 4) Draw P_1 using **Stitching_HDM**(S_1)
- 5) Draw P_2 using **Stitching_HDM**(S_2)
- 6) Let Q be the union of P_1 and P_2
- 7) If Q is a hard disk model, return Q
- 8) Otherwise return **Stitching_HDM**(S)

Perfect simulation for Strauss

Perfect Simulation Timeline

- Propp and Wilson 1996 Coupling From the Past
- Kendall and Møller 1999 Dominated CFTP for Point Process
- Huber 2015 Birth-Death-Swap for Point Process
- Jerrum and Guo 2019 Partially Recursive Sampling for Point Process

CFTP based on Markov chains

These jump chains make local changes to a state, either removed or adding a single point

(Dis/Ad) vantages of jump chains

Advantages

- When λ small relative to R^2, fast
- Critical Value of λ
- For λ below critical value, polynomial time

Disadvantages

• For λ above critical value, exponential running time

(Dis/Ad) vantages of stitching

Advantages

- Runs for larger values of lambda
- Easier to code
- Exponential time based on boundary length of split, rather than area like AR

Disadvantages

• Always exponential running time

Experimental log running time

Why the improvement?

Acceptance needed at *length of boundary* between halves, not the *areas* of the halves

Why the improvement?

Acceptance easier at boundary when both sides already have fewer points than in PPP

Part Ob Correctness How do we know this works?

Fundamental Theorem of Perfect Simulation

Suppose a probabilistic recursive algorithm has two properties:

It is locally correct.

02 It

It terminates with probability 1.

Then it is globally correct.

focally correct

A recursive algorithm is *locally correct* if when you replace recursive calls with an *oracle* that comes directly from the target distribution, the overall algorithm is correct.

Globally correct

A recursive algorithm is *globally correct* if its final output comes from the target distribution

Local correction for stitching HDM

Stitching_HDM(S)

- 1) Draw $P \sim PPP(\lambda, S)$
- 2) If P is a hard disk model, return P
- 3) Partition S into S_1 and S_2
- 4) Draw P_1 using **Stitching_HDM**(S_1)
- 5) Draw P_2 using **Stitching_HDM**(S_2)
- 6) Let Q be the union of P_1 and P_2
- 7) If Q is a hard disk model, return Q
- 8) Otherwise return Stitching_HDM(S)

Stitching_HDM_oracle(S)

- 1) Draw $P \sim PPP(\lambda, S)$
- 2) If P is a hard disk model, return P
- 3) Partition *S* into *S*_1 and *S*_2
- 4) Draw P_1 from HDM over S_1
- 5) Draw P_2 from HDM over S_2
- 6) Let Q be the union of P_1 and P_2
- 7) If Q is a hard disk model, return Q
- 8) Otherwise return from HDM over S

Note: HDM = Hard Disks Model

A nice property of uniforms

Suppose

- B is a subset of A
- X is uniform over A
- X happens to fall into B Then X is uniform over B

QQ 2

Correctness of oracle version

Property of uniforms

- Suppose X ~ Unif(A)
- For B a subset of A, suppose X is in B
- Then [X | X in B] ~ Unif(B)

So P_1 union P_2 a valid HDM means that their union is uniform over valid HDM

Stitching_HDM_oracle(S)

- 1) Draw P ~ PPP(λ, S)
- 2) If P is a hard disk model, return P
- 3) Partition *S* into *S*_1 and *S*_2
- 4) Draw P_1 from HDM over S_1
- 5) Draw P_2 from HDM over S_2
- 6) Let Q be the union of P_1 and P_2
- 7) If Q is a hard disk model, return Q
- 8) Otherwise return from HDM over S

Note: HDM = Hard Disks Model

FTPS Proof Outline

01 02 03

Make truncated version of algorithm that stops after *n* recursions and uses oracles thereafter

Through local correctness + induction, truncated version has correct output

Since original algorithm terminates with probability 1, as *n* goes to infinity, truncated alg output equals original alg output

Stitching can be done for densities as well!

Partition the state space

 $S = S_1 \cup S_2, S_1 \cap S_2 = \emptyset$

Factor the density

 $f(S) = f(S_1)f(S_2)f_{\text{stitch}}(S_1, S_2)$

Gives a way to do Strauss process for $\gamma > 0$

When to use

When to use Stitching?

- Designed for Point Processes
- Broader application: works whenever density product of three parts, two of which look like original problem
- Can be effective in situation where traditional Markov chain methods too slow

https://arxiv.org/abs/2012.08665

Want to learn more?

Free to download Probability textbooks Perfect Simulation

Monographic on Statistics and Replied Probability SA

Mark L, Huber

CONCERNE.

Held by the Library

http://www.markhuberdatascience.org/

Does anyone have any questions? youremail@freepik.com +91 620 421 838 yourcompany.com

hanks!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**

Please keep this slide for attribution