Data Science Dwarves know...
Always label your axes

Ann unusnal picture

The image to the right is of a zero overlap Strauss process of rate 100 over a region of area 1 with radius 0.15

Spatial Data

Points
Usually in a subset of $R^{\wedge} n$
03
Random
In model, points are placed randomly into the region
2) Modeling

Trees, cities, forest fires, disease outbreaks

Strauss model
Points don't like to be near one another

The simplest model

In Poisson point processes,

- points uniform over space
- points don't interact

bo
bod

$$
\lambda=10
$$

$$
\lambda=100
$$

Perfect Simulation Jlgorithm

A Perfect Simulation algorithm...

- Uses randomness
- Calls itself recursively
- Ends with probability 1
- Output comes exactly from target distribution

Doesn't work well if area of region large

For square of diagonal length R, if two or more points then they must be within distance R of each other

So chance of accepting is chance of one or zero points appearing, which is

$$
\exp \left(-\lambda \frac{R^{2}}{2}\right)\left[1+\lambda \frac{R^{2}}{2}\right]<1
$$

Doesn't work well if area of region large

Chance of accepting in large square at most chance that every small square accepts which is

$$
\exp \left(-\lambda \frac{R^{2}}{2}\right)\left[1+\lambda \frac{R^{2}}{2}\right]^{100}
$$

So overall chance of accepting declines exponentially in area of region

They property of Ifard Disss Todel

Suppose the square is divided into two rectangles of equal size

If original sample is a valid hard disk draw, then so are both the sample on the left hand side and the right hand side

The idea Gehind stitching

1) Recursively draw sample P _left from left hand side and P _right from right hand side
2) If $P_{_}$left union P_{-}right is a valid hard disks draw, return it and quit
3) Otherwise start over from scratch drawing the sample

The idea Gehind stitching

1) Recursively draw sample P _left from left hand side and P _right from right hand side
2) If $P_{_}$left union P_{-}right is a valid hard disks draw, return it and quit
3) Otherwise start over from scratch drawing the sample

The idea Gehind stitching

1) Recursively draw sample P _left from left hand side and P _right from right hand side
2) If $P_{_}$left union P_{-}right is a valid hard disks draw, return it and quit
3) Otherwise start over from scratch drawing the sample

When to use

Improves running time as long as

Or more simply

$$
1 \geq p_{\text {left }}+p_{\text {right }}
$$

Recursion ard level

Break each of those four pieces into left and right hand side

When to stop

Stop dividing the space when

$$
p_{\text {left }} \geq \frac{1}{2}, p_{\text {right }} \geq \frac{1}{2}
$$

But we don't know these values!
Solution: Try acceptance rejection once, otherwise use recursion

Final algorthm

Stitching_HDM(S)

1) $\operatorname{Draw} P \sim \operatorname{PPP}(\lambda, S)$
2) If P is a hard disk model, return P
3) Partition S into $S_{-} 1$ and $S _2$
4) Draw $P_{-} 1$ using Stitching_HDM(S_1)
5) Draw P _2 using Stitching_HDM(S_2)
6) Let Q be the union of $P _1$ and $P _2$
7) If Q is a hard disk model, return Q
8) Otherwise return Stitching_HDM(S)

Perfect simulation for Strauss

Perfect Simulation Timeline

- Propp and Wilson 1996

Coupling From the Past

- Kendall and Møller 1999

Dominated CFTP for Point Process

- Huber 2015

Birth-Death-Swap for Point Process

- Jerrum and Guo 2019

Partially Recursive Sampling for Point Process

Cfote based on Markeo chains

These jump chains make local changes to a state, either removed or adding a single point

(Disf(cd) vantages of jump chains
Advantages

- When λ small relative to $R^{\wedge} 2$, fast
- Critical Value of λ
- For λ below critical value, polynomial time

Disadvantages

- For λ above critical value, exponential running time

Advantages

- Runs for larger values of lambda
- Easier to code
- Exponential time based on boundary length of split, rather than area like AR

Disadvantages

- Always exponential running time

Exxperimental running time

Experimental \log running time

Jundamental Jheorem of Perfect Simulation

Suppose a probabilistic recursive algorithm has two properties:

01 It is locally correct.
(O2) It terminates with probability 1.
Then it is globally correct.

Locally correct

A recursive algorithm is locally correct if when you replace recursive calls with an oracle that comes directly from the target distribution, the overall algorithm is correct.

Local correction for stiching ISDAF.

Stitching_HDM(S)

1) $\operatorname{Draw} P \sim \operatorname{PPP}(\lambda, S)$
2) If P is a hard disk model, return P
3) Partition S into $S_{-} 1$ and $S _2$
4) Draw $P_{-} 1$ using Stitching_HDM(S_1)
5) Draw $P _2$ using Stitching_HDM(S_2)
6) Let Q be the union of $P _1$ and $P _2$
7) If Q is a hard disk model, return Q
8) Otherwise return Stitching_HDM(S)

Stitching_HDM_oracle(S)

1) $\operatorname{Draw} P \sim \operatorname{PPP}(\lambda, S)$
2) If P is a hard disk model, return P
3) Partition S into $S _1$ and $S _2$
4) Draw P_1 from HDM over S_1
5) Draw P_2 from HDM over S_2
6) Let Q be the union of $P _1$ and $P _2$
7) If Q is a hard disk model, return Q
8) Otherwise return from HDM over S

Note: HDM = Hard Disks Model

Correctiness of oracle Dersion

Property of uniforms

- Suppose X ~ Unif(A)
- For B a subset of A, suppose X is in B
- Then $[X \mid X$ in $B] \sim \operatorname{Unif}(B)$

So $P _1$ union $P _2$ a valid HDM means that their union is uniform over valid HDM

Stitching_HDM_oracle(S)

1) $\operatorname{Draw} P \sim \operatorname{PPP}(\lambda, S)$
2) If P is a hard disk model, return P
3) Partition S into $S _1$ and $S _2$
4) Draw P_1 from HDM over S_1
5) Draw P _2 from HDM over S_2
6) Let Q be the union of $P _1$ and $P _2$
7) If Q is a hard disk model, return Q
8) Otherwise return from HDM over S

> Note: HDM = Hard Disks Model

