
A Bernoulli factory using the Fundamental
Theorem of Perfect Simulation

Mark Huber

Fletcher Jones Foundation Associate Professor of Mathematics and

Statistics and George R. Roberts Fellow

Department of Mathematical Sciences

Claremont McKenna College

8 July, 2016

Recursion

Zen computing:

In order you understand recursion, you must first understand

recursion.

Bernoulli Factory

What is a Bernoulli factory?

Suppose that I have an iid sequence of coin flips of heads or tails

H H H T H · · ·

Make heads = 1, tails = 0.

1 1 1 0 1 · · ·

Probability p that a coin flip is 1 is unknown

Bernoulli process

Mathematically,

B1, B2, . . .
iid∼ Bern(p)

Where

B ∼ Bern(p)⇒ P(B = 1) = p and P(B = 0) = 1− p

An example Bernoulli Factory:

Question: Can I use these coin flips to build a new random variable

B ∼ Bern(p(1− p))?

Answer: Sure! Just use

B = X1(1−X2)

P(B = 1) = P(B1 = 1)P(B2 = 0) = p(1− p)

Extra randomness

B1, B2, . . .
iid∼ Bern(p)

Question: Can I use these coin flips to build a new random variable

B ∼ Bern(p/3)?

Answer: Helpful to have some extra randomness.

LetU ∼ Unif([0, 1]) be independent of the {Bi}. Then

B = 1(U ≤ 1/3)X1

does the job, where 1(·) is the indicator function that is 1 if the
argument is true and 0 otherwise

Bernoulli factory (informal)

Definition

A Bernoulli factory takes an iid sequence of coin flips with parameter

p together with some extra randomness and builds a single coin flip

with parameter f(p) for a function f .

Definition

If T is the (possibly random) number of coin flips needed, then call T
the running time or number of flips taken by the algorithm.

Bernoulli factory (formal)

Definition

Given p∗ ∈ (0, 1] and a function f : [0, p∗]→ [0, 1], a Bernoulli
Factory is a computable functionA that takes as inputX1, X2, . . .

andU and returns Y such that ifXi
iid∼ Bern(p) andU ∼ Unif([0, 1]),

thenA(U,X1, X2, . . .) ∼ Bern(f(p)).

Definition

If T is a stopping time with respect to the natural filtration created

byU,X1, X2, . . ., and for all values of yi,

A(U,X1, X2, . . . , XT , yT+1, yT+2, . . .)

has the same value, call T the running time or number of flips taken

by the algorithm.

Bernoulli factory: origins

S. Asmussen, P. W. Glynn, and H. Thorisson, Stationarity Detection in the

Initial Transient Problem, ACM Trans. Modeling and Computer Simulation,

2(2):130–157, 1992.

I Simulation from stationary distribution of regenerative Markov

processes

I Required as subroutine ability to generate from Bernoulli

factory with f(p) = Cp for constantC

Bernoulli factory: next steps

M. S. Keane and G. L. O’Brien, A Bernoulli factory, ACM Trans. Modeling

and Computer Simulation, 4:213–219, 1994.

I Introduced term Bernoulli factory

I Gave necessary and sufficient conditions on f for a Bernoulli

factory to exist

I Mathematical construct rather than algorithm.

I Unknown if expected run time finite or tails heavy or light

Bernoulli factory: Bernstein connection

S. Nacu and Y. Peres, Fast simulation of new coins from old, Ann. Appl.

Probab., 15(1A):93–115, 2005.

I Gavemethod with exponential tails (so unknown if expected

run time finite)

I Used Bernstein polynomials to approximate f(p):

n∑
i=0

aip
i(1− p)i ≤ f(p) ≤

n∑
i=0

bip
i(1− p)i

I Algorithm, but required exponential time to implement

I Showed f(p) = 2p sufficient to get any real analytic f

Bernoulli factory: first practical algorithm

K. Łatuszyński, I. Kosmidis, O. Papaspiliopoulos, and G. O. Roberts.

Simulation events of unknown probability via reverse timeMartingales,

Random Structures Algorithms, 38:441–452, 2011.

I Practical implementation of Nacu & Peres

I Introduced reverse timeMartingales technique for perfect

simulation

I Numerical experiments indicated run time not linear inC

Bernoulli factory: small improvement

J. Fegal and R. Herbei, Exact sampling for intractable probability

distributions via a Bernoulli factory, Electron. J. Stat., 6:10–37,2012

I Changed target function slightly to improve Nacu & Peres

analysis

A. C. Thomas and J. Blanchet, A practical implementation of the Bernoulli

factory, arXiv:1105.2508, 2011.

WhyCp hard: Needs unbounded random number of flips

Fact
ForC > 1, no Bernoulli factory exists forCp that uses a finite number

of flips over any nontrivial interval of p values.

Proof

After n flips there are 2n possible outcomes. If outcome i yields a 1
(usingU) with probability pi, and has n(i) heads and n− n(i) tails,
then the output function g(p) has the form:

g(p) =

2n∑
i=1

pn(i)(1− p)n−n(i).

This is a polynomial in p, but only one polynomial equalsCp over a
nontrivial interval of p values, and that isCp. But g(p) ∈ [0, 1], so
cannot equalCp over all p ∈ [0, 1].

Why 2p hard for p = 1/2

Suppose have a 2p Bernoulli factory

I Suppose forX1, X2,
iid∼ Bern(p), Y ∼ Bern(2p).

I Estimate p by p̂Y = Y /2

I If p = 1/2, then P(Y = 1) = 1,V(p̂Y) = 0!

I Not possible! (Proof: Wald’s sequential ratio probability test)

Restrict domain

I Only allow 2p ∈ [0, 1− ε] so p ∈ [0, 1/2− ε/2]

General variance argument

Unbiased minimum variance estimate for p:

p̂n =
B1 + · · ·+Bn

n
, V(p̂n) =

p(1− p)

n

Suppose Y ∼ Bern(Cp). Then unbiased estimate for p:

p̂ =
Y

c
, V(p̂) =

p(1− Cp)

Cn

One draw of Y counts as

C(1− p)

1− Cp

draws fromBi

WhyCp is hard

Therefore, for p small and 1− Cp > ε, one draw of Y should require

at least

Cε−1

draws from original coin

Recursive Bernoulli Factories

Breaking simulations into pieces

Suppose I wish to simulate from [0, 1] ∪ [2, 4]

0 1 2 4

Unif([0, 1] ∪ [2, 4])

1/3 Unif([0, 1])

2/3 Unif([2, 4])

Works because

Unif([0, 1] ∪ [2, 4]) ∼ (1/3)Unif([0, 1]) + (2/3)Unif([2, 4])

Von Neumann’s Bernoulli Factory

To flip aX ∼ Bern(1/2) coin

X

p

1− p

1− p

X

p

0

p

1− p
1

Proof of correctness

X might be 1, so let’s find the probability:

P(X = 1) = p(1− p) + (p2 + (1− p)2)P(X = 1)

Solving for P(X = 1):

P(X = 1) =
p(1− p)

1− (p2 + (1− 2p+ p2))
=

p(1− p)

2(p)(1− p)
=

1

2

Expected # of flips

Recursive nature makes it easy to find expected # of flips:

E[T] = 2 + [p · p+ (1− p)(1− p)]E[T]

E[T] =
2

2p(1− p)
=

1

p(1− p)

Two coin algorithm [Gonçalves, Roberts, Łatuszyński. 2016]

X ∼ Bern

(
s1p1

s0p0 + s1p1

)

X

s1/(s0 + s1)

s0/(s0 + s1)

1− p0

p0
0

1− p1

X

p1
1

Exponential Bernoulli factory

Beskos et. al. 2006, forC a positive constant want

X ∼ Bern(exp(−Cp))

T ∼ Exp(C)

Bern (exp(−Cp))

T > 1 1

T < 1

p
0

1− p
Bern(exp(−(1− T)Cp)

Not a proof of correctness

Note that this tree is locally correct:

P(X = 1) = P(T > 1)(1) + (1− p)

∫ 1

t=0

C exp(−Ct)(exp(−(1− t)Cp)) dt

= exp(−C) + (1− p)

∫ 1

t=0

C exp(−Cp) exp(−tC(1− p)) dt

= exp(−C) + exp(−Cp)− exp(−Cp) · exp(−C(1− p))

= exp(−Cp)

Had to assume that recursive call worked to prove correctness

Randomly Truncated Infinite

Series

Connecting random truncation and recursion

Suppose

X =

N∑
i=1

Xi,

whereN ∈ {1, 2, . . .} is a random variable

Let

Wa =
N∑
i=a

Xi

NoteX = W1

In recursion form...

r = P(N ≥ a+ 1)/P(N ≥ a)

Wa

r

Xa +Wa+1

1− r

Xa

Recursive Linear Bernoulli

Factory

Can recursion aid in the 2p-coin problem?

M. Huber, A Bernoulli mean estimate with known relative error

distribution, Random Structures & Algorithms, arXiv:1309.5413, to appear

Idea:

I Break simulation problem into pieces using the p-coin

I Employ recursion to handle created subproblems

One flip of the coin

Bern(2p)

p 1

1− p
Bern

(
p

1− p

)

Works because (forX ∼ Bern(2p),

P(X = 1) = 2p = (p)(1) + (1− p)

(
p

1− p

)

Shorthand

Since the only distributions we are interested here are Bernoulli,

which are determined by their parameter, shorthand to write:

2p

p 1

1− p p

1− p

What to do with p/(1− p)

p

1− p

1/2 2p

1/2 2p
p

1− p

Here
p

1− p
=

1

2
· 2p+ 1

2
(2p)

p

1− p

This is recursion!

We have reduced the problem of flipping a Bern(2p)
coin to flipping a Bern(2p) coin!

Recursion: when an algorithm calls a version of itself

What to do with (2p)ip/(1− p)?

For i ∈ {0, 1, . . .}

(2p)i
p

1− p

1/2 (2p)i+1

1/2 (2p)i+1 p

1− p

Large i

Since 2p ≤ 1− ε, (2p)i → 0 as i→∞:

(2p)i

1/e e(2p)i = (2e1/ip)i

1− 1/e
0

Total algorithm in pictures

To draw f(p) = Cp for constantC,Cp ≤ 1− ε

Cp

p 1

1− p
(C − 1)p

1− p

(Cp)i
p

1− p

1/C (Cp)i+1

1− 1/C

(Cp)i+1 (C − 1)p

1− p

Run the above until terminates at 1 or i > 4.6/ε. Then:

(Cp)ig(p)

1/e (Ce1/ip)ig(p)

1− 1/e 0

Update: ε← 1− e1/i(1− ε),C ← Ce1/i, continue until halts

Is this algorithm correct?

Reasons to doubt algorithm

I Algorithm calls itself recursively with larger value ofC

I C is unbounded

I Is that legal?

In original paper, proved correctness

I Repeated arguments made in other perfect simulation

algorithms

Recursion and Perfect

Simulation

An example

Suppose thatX ∼ Unif({1, 2, 3, 4, 5, 6}).

I can roll as many dice (iid) as I’d like

I’d likeX ∼ Unif({1, 2, 3, 4, 5})

Acceptance Rejection

The idea:

I Roll the die once

I If it falls in {1, 2, 3, 4, 5}, accept as draw from Unif({1, 2, 3, 4, 5}
I Otherwise, start algorithm over again.

In pseudocode:

function draw_x_5
1. DrawX ← Unif({1, 2, 3, 4, 5, 6})
2. IfX ∈ {1, 2, 3, 4, 5}, then returnX and halt

ElseX ← draw_x_5, returnX and halt

Algorithm in pictures

Unif({1, . . . , 5})

U ∈ {1, . . . , 5} U

U = 6 Unif({1, . . . , 5})

DrawU ← Unif({1, . . . , 6})

When an algorithm calls itself, call it recursion.

Proof that the algorithm works

ConsiderX the output of the algorithm. Then:

P(X = 3) =
1

6︸︷︷︸
P(U=3)

+
1

6︸︷︷︸
P(U=6)

P(X = 3)︸ ︷︷ ︸
recursion

Solve to get

P(X = 3) =
1

5

Definition

A perfect simulation is an

exact simulation that employs

recursion.

Coupling from the past

J. G. Propp and D. B. Wilson, Exact sampling with coupled Markov chains

and applications to statistical mechanics, Random Structures & Algorithms,

9(1–2):223–252, 1996

Definition

For a distribution φ, ay that φ : Ω× [0, 1]→ Ω is a stationary update

function if forX ∼ π andU ∼ Unif([0, 1]), φ(X,U) ∼ π.

Definition

CallA ⊆ [0, 1] coalescent if for all u ∈ A, φ(Ω, u) is a single element

set.

Algorithm in pictures

π

U ∈ A φ(Ω, U)

U /∈ A
Y ∼ π
X ← φ(Y, U)

DrawU ← Unif([0, 1])

Let [π|U] be the distribution of φ(X,U)whereX ∼ π and

U ∼ Unif([0, 1]). Then this works because

π ∼ [π|U ∈ A]P(U ∈ A) + [π|U /∈ A]P(U /∈ A)

What do these have in common?

Acceptance/rejection, CFTP, recursive Bernoulli factory

I All use recursion

I All easy to prove correct if can assume recursive call is correct

I All actually are correct (if halt with probability 1)

Properties of a fundamental theorem

I Should explain a wide range of phenomenon

I Should be obvious when looked at in the right way

I Does not cover everything in area

Some examples

Fundamental Theorem of Simulation

Most problems reduce to uniform random variables.

Fundamental Theorem of Markov chains

Under mild conditions, as you take more steps in a Markov chain,

you approach the stationary distribution of the chain.

Informal version 1

Theorem (Fundamental Theorem of Perfect Simulation)

In proving an algorithm’s correctness, you can assume that your

recursive call to your probabilistic algorithm gives the correct result,

assuming that the algorithm halts with probability 1.

Another way of viewing recursion

Each level of algorithm splits target into two possibilities

πi

Hi

πu(i)

HC
i π`(i)

With recursion, gives rise to an infinite tree

Infinite tree for acceptance/rejection example

Let π ∼ Unif({1, . . . , 6}), π′ ∼ Unif({1, . . . , 5}).
LetHi be eventUi ∈ {1, 2, 3, 4, 5}

π

H1

π′

Hc
1

π

H2

π′

Hc
2

π

H3 π′

HC
3

· · ·

The π′ nodes are halting nodes

Infinite tree version of FTPS

Theorem (Fundamental Theorem of Perfect Simulation)

Suppose for all nodes i, that

πi ∼ P(Hi)πu(i) + P(HC
i)π`(i),

and that the probability of reaching a halting node is 1. The output of

the algorithm is the distribution of the starting node.

Proof of FTPS

I Call the original algorithmA, and its outputX.

I Suppose algorithmAi is just likeA, but if you get to node i, just
output⊥ and quit. Call its outputXi.

I Then use local correctness to show by induction that for all

measurableD,

P(Xi ∈ D) ≤ π(D) ≤ P(Xi ∈ D) + P(reach node i)

I The probability that the algorithm halts with probability 1 gives

that P(Xi ∈ D) coverges to P(X ∈ D) and the inequality
above gives that it converges to π(D). Hence
P(X ∈ D) = π(D).

Perfect simulation pseudocode

Instead of infinite tree, can use recursion to describe:

PS(π)
1. DrawU ← Unif([0, 1])

2. IfU ∈ A return g(U) and halt

3. Else recursively draw Y ← PS(π′), return g(Y, U) and halt

Recursion point of view

Theorem (Fundamental Theorem of Perfect Simulation)

Suppose that for all measurable setsB,

P(X ∈ B) = P(U ∈ A)P(g(U) ∈ B|U ∈ A)

+ P(U /∈ A)P(g(Y, U) ∈ B|U /∈ A).

whereX ∼ π and Y ∼ π′.
If the probability that PS(π) eventually halts is 1, then the output of PS
has distribution π.

Back to Bernoulli Factory!

Local correctness
Recall the recursive Bernoulli factory...

Total algorithm in pictures

To draw f(p) = Cp for constantC,Cp ≤ 1− ε

Cp

p 1

1− p
(C − 1)p

1− p

(Cp)i
p

1− p

1/C (Cp)i+1

1− 1/C

(Cp)i+1 (C − 1)p

1− p

Run the above until terminates at 1 or i > 4.6/ε. Then:

(Cp)ig(p)

1/e (Ce1/ip)ig(p)

1− 1/e 0

Update: ε← 1− e1/i(1− ε),C ← Ce1/i, continue until halts

Applying FTPS

Recursive BF has nice properties

I Local correctness comes from design

I Local correctness also means parameter is a martingale

I Boundedmartingales are uniformly integrable, so Martingale

Convergence Theorem says it converges with probability 1

I Only way parameter converges is when it moves to 0 or 1, that

is, convergence of martingale = algorithm terminates

Recursive view also helps in analyzing running time

Bymaking algorithm recursive, aids in bounding E[T].

Theorem
The expected number of flips for the recursive Bernoulli factory is

bounded above by

9.5Cε−1

Order of the run time is correct, constant is not.

SmallCp Bernoulli Factory

M. Huber, Optimal Bernoulli factories for small mean problems

arXiv:1407.00843

Getting close to optimal for smallCp

Can use recursion to getCp/(1 + Cp) coin:

Cp

1 + Cp

1

C + 1

0

C

C + 1

p
1

1− p
Cp

1 + Cp

Correctness

Use FTPS

Cp

1 + Cp
= (0)

1

C + 1
+

C

C + 1

[
p+ (1− p)

Cp

1 + Cp

]
X

Also, 1/(C + 1) branch ensures that algorithm terminates in finite

time with probability 1

Run time

Recursive formmakes it easy to determine run time

E[T] =
C

C + 1
[1 + (1− p)E[T]]

...

E[T] =
C

1 + Cp

Using this new coin

Taking advantage of small mean coins

I IfCp is small, thenCp/(1 + Cp) is just slightly smaller thanCp

I SayCp ≤M

I Then if β ≤ (1− 2M)−1, thenCpβ(1 + βCp)−1 ≥ Cp

The small mean algorithm

Input:M which is an upper bound onCp

1. β ← (1− 2M)−1

2. Draw Y ← Bern(βCp(1 + βCp)−1)

3. DrawB ← Bern(1/β)

4. If Y = 0 thenX ← 0

5. Elseif Y = 1 andB = 1, thenX ← 1

6. ElseX ← Bern([βC(β − 1)−1]p)

The last line can be accomplished using our original method

The running time

Theorem
ForCp ≤M < 1/2, it requires at most (on average)

C

(1− 2M)(1 + Cp)
+ Cp ·

[
19C

1

1− 2M + Cp

]
coin flips.

Note forCp is small andM bounded away from 1/2, the second
term is small

Current fastest all ε Bernoulli
Factory

Subroutines

Let β ∈ [1, 1/(1− ε), then can make coins with mean

βCp

1 + βCp

(βCp)i

βCp
1+βCp (βCp)i−1

1
1+βCp

(βCp)i+1

βCp

fβ,m(p)
1

1− fβ,m(p)(βCp)m

Use to find fβ,m(p)

(βCp)i

βCp
1+βCp (βCp)i−1

1
1+βCp

(βCp)i+1

βCp

fβ,m(p)
1

1− fβ,m(p)(βCp)m

βCp = fβ,m(p)(1) + (1− fβ,m(p)))(βCp)m

fβ,m(p) = βCp
1− (βCp)m−1

1− (βCp)m

Why is this helpful?

For β > 1:
fβ,m(p)

β
≤ Cp ≤ fβ,m(p)

This inequality can then be turned into an algorithm

Turning the inequality into an algorithm

Cp

1 − fβ,m(p)
0

fβ,m(p)

1/β 1

1− 1/β
βCp− fβ,m(p)

β − 1

Let β = 1 + 1/m so 1/(β − 1) = m.

Reducingm

m[βCp− fβ,m(p)]

1− βCp 0

βCp

gβ,m(p) 1

1− gβ,m−1(p)
(m− 1)[βCp− fβ,m−1(p)]

where

gβ,m(p) =
(βCp)m

1 + · · ·+ (βCp)m

Breaking the last coin apart

(βCp)i

βCp
1+βCp (βCp)i−1

1
1+βCp

(βCp)i+1

(βCp)m

gβ,m(p)
1

1− gβ,m(p)(βCp)m+1

The result

Theorem
The mean number of coin flips used by the r based algorithm is

bounded above by

7.57Cε−1

What is Retrospective Monte

Carlo?

Narrow view

Special case of acceptance/rejection where only

part of the random variate need be generated to

determine if acceptance or rejection occurs.

Broad view

By rearranging the order in which you utilize

randomness, sometimes recursion is made

unnecessary.

