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About this course

This is a course in Calculus of several variables, also known as Multivariable Calculus The main topics
of the course are:

1: Parameterizing curves and surfaces

2: Linear approximations to curves and surfaces

3: Partial derivatives

4: Optimization in multiple dimensions

5: Multivariable Taylor series expansions

6: Integrals in multiple dimensions

7: Differential Forms and Stokes’ Theorem

My lecture notes will be provided for the class for the class for those who wish to concentrate on lecture or
get ahead in the reading to make understanding easier. You can assist me and the class by letting me know
when you see any mistakes or typos in the notes, and I will correct them as quickly as possible. Although
class attendance is not required, it is certainly recommended!

How can I get an A in this course?

1: Come to every class on time (try to come five minutes early if you are habitually late).

2: Turn off your phone/laptop/other external communication device when in lecture, they suck your
attention away even when you are not looking at them.

3: Read all the homework questions and try them by yourself first (I’d schedule an hour on Wednesday
afternoon or evening to do this), then talk to others or me if you have problems.

4: Do actually talk to me (or friends in the class) though if you can’t do a homework problem.

5: When I hand out the study guides, learn the definitions presented.

6: Do extra practice on problem types that you find difficult. [There’s a wealth of examples on the web,
please ask me if you need any assistance in finding problems and we can go Google hunting together.]
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Levels of Mathematics

Mathematics is about patterns of relationships between abstract objects. Something that is abstract
could be something as simple as the number 2, or as complex as Brownian motion. Roughly speaking,
mathematics is about understanding the permissible ways that you can transform problems and ideas to
make them easier to work with. One way to think about it is that there are four levels of mathematics.

1: Techniques.

2: Ideas and concepts.

3: Rigorous proof.

4: Automatical proof verification.

The first level is all about using theorems and facts to solve real problems. For instance, in high school
you learned an algorithm for how to multiply two numbers written in decimal format. At the second level,
we try to understand mathematical facts through a different prism. For instance, why does a times b equal
b times a for numbers a and b? Well, a times b is the area of a rectangle that has length a on the horizontal
side and b on the vertical side. Whereas b times a is the area of the rectangle with length b on the vertical
side and a on the horizontal side. But we got that rectangle just by rotating the first rectangle 90 degrees,
which does not change the area.

a

b a

b

Figure 1: a · b = b · a, a geometric perspective.

At the third level, we have the notion of rigorous proof. At this level it is important to define exactly
what a particular mathematical object is, so that we can derive true facts that follow logically from the
definitions. For instance, for defining a · b where a and b are positive integers, we could build a Turing
machine that when fed a tape of a and b in unary, returns a · b. This would give a precise definition, and so
then it would be possible to logically derive (prove) the result that a · b = b · a. This is the level at which
most mathematics is done in journals.

At the fourth level, everything has entirely been reduced to symbols, and the permissible steps have been
written out precisely enough that it is possible for a computer to check the proof. Very few mathematicians
work at this level, but it is the most precise level and the least likely to contain errors.

About this course This text contains a complete semester course in Multivariable Caclulus. It starts at
the beginning, building from the ground up using set-theory. There are a lot of definitions in the text about
derivatives, integrals, and the linear algebra that we need to deal with them properly.
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Intuition, Definitions, Facts, Lemmas, and Theorems

In this text you will encounter various boxes, containing intuitions, definitions, facts, lemmas, and theo-
rems.

Intuition This is a way about thinking about a mathematical object that is not a formal definition, but
gives the idea behind the object. For instance, saying that a derivative is the slope of the tangent line to the
function doesn’t give you a way to calculate it, but gives a visual idea of what the derivative is all about.

Definition This is the formal mathematical definition of an object. Often these definitions are in terms of
mathematical objects defined earlier. For instance, the formal definition of a derivative of a function f with
one real input and output is

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

In other words, the definition of derivative is in terms of an earlier idea of limits.
There is no need to prove that definitions are true, they are true by definition.

Facts Once we have definitions, we can use them to prove things that are true about mathematical objects
using logic. For instance, given the definition of derivative above,

[x2]′ = lim
h→0

(x+ h)2 − x2

h

= lim
h→0

x2 + 2xh+ h2 − x2

h

= lim
h→0

2x+ h

= 2x.

The fact that the derivative of x2 is 2x follows logically from the definition, whereas the definition iteself is
just taken to be true.

Lemmas These are facts that are important, but not generally as important as Theorems.

Theorems These are the most important facts in the course. They get used a lot in many different
situations, and so it is good to know these by heart.
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Review: Single Variables Calculus

In single variable calculus, you studied many things, but the essential concepts were the following:

� Sequences

� Limits

� Series

� Derivatives

� Integrals

0.1 Intuitive notions of Calculus

In single variable Calculus, limits, derivatives, and integrals are applied in the context of functions that had
a single input, and a single output. A function is a computation that links two variables together. So given
the input variable, you can calculate the output variable. For instance, f in the following picture links x
and y together (here y = f(x).)

fx y

Intuition 1
A function y = f(x) is a description of how to calculate the value of the output variable y given the input
variable x.

We will write f : R→ R to mean that y = f(x) where both x and y are real numbers.

Intuition 2
A sequence is an unbounded stream of numbers such that for any integer n, we can calculate the nth
number in the sequence.

For instance, ai = i2 is a sequence. We could also have written a(i) = i2, or just write out the terms of
the sequence for i = 1, 2, . . .:

1, 4, 9, . . . .

As n goes to infinity, the numbers ai = i2 get bigger and bigger, and so we say the limit is ∞. The
numbers bi = 1/i2 get smaller and smaller as i→∞, so we say {bi} has limit 0.

Intuition 3
The limit of a sequence is the number that the terms of the sequence get close to as we move farther and
farther out in the sequence. If for any fixed number, the sequence is eventually larger than that number
forever, then the limit is ∞.

If we add the first n terms in a sequence together, we can a new sequence. For instance, if the original
sequence was ai = i2, the new sequence is

s1 = a1 = 1, s2 = a1 + a2 = 5, s3 = a1 + a2 + a3 = 14, . . .

Intuition 4
If the limit of the summed sequence is finite as the number of terms added goes to infinity, call the limit
of the sum a series.

10



For instance,

1 +
1

2
+

1

4
+

1

8
+ · · · = 2

is a series.
The key to Calculus is understanding the notion of the differential, which is a tiny change in a variable

value. For a variable, the differential is the variable name with a d in front of it. So a tiny change in variable
y is dy, a tiny change in variable x is dx, a tiny change in variable r is dr, and so on.

Now, when we move the input x a little bit, then the output y changes a little bit. In the picture, this
looks like:

fx

dx

y

dy

For many functions, the amount that y changes (dy) is proportional to the amount that x changes (dx).
We call that constant of proportionality, the derivative.

Intuition 5
The derivative of the function y = f(x) is the instaneous rate of change of y in terms of x, or f ′(x) =
dy/dx.

Next up is the notion of an integral. An integral is a sum of an infinite number of infinitely small things.

Intuition 6
Suppose that some quantity (profit, area, probability) is accumulating at rate r(t) which changes for
t ∈ [a, b]. Then the integral of r(t) over t ∈ [a, b] is the total amount of accumulation that occurs. We
write ∫

t∈[a,b]

r(t) dt.

Every integral consists of three parts: the limits of the integral, the integrand (the rate funtion) and the
differential.

For example:

� Oil is being pumped out of the ground at rate f(t). How much total oil is drawn for t from t0 to t1?∫ t1

t0

f(t) dt.

� For two functions f(x) and g(x), area between the function accumulates at rate |f(x) − g(x)|. What
is the area between the functions for x from 0 to 1?∫

x∈[0,1]

|f(x)− g(x)| dx.

0.2 Formal notions of Calculus

In order to prove facts, lemmas, and theorems about mathematical objects, we need precise definitions of
those objects. Those precise definitions are contained in this section. Start with the most important part of
mathematics: functions.

Definition 1
A function is a collection of points (a, b) such that for each value a there is at most one b such that (a, b)
is in the set of points.
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A function Not a function

Next comes sequences.

Definition 2
A sequence is a function that takes as input a positive or nonnegative integer.

Now the limit of a sequence is a number such that for any difference away from that number, eventually
the tail of sequence lies in that difference.

Definition 3
Say that limn→∞ an = L if for all ε > 0, there exists an n such that {an, an+1, an+2, . . .} ⊆ [L− ε, L+ ε].

Then a series is just the limit of the partial sums of a sequence.

Definition 4
Suppose that the sequence {ai} satisfies

lim
n→∞

n∑
i=1

ai = L.

Then call L a series, and write
∞∑
i=1

ai = L.

Next comes a limit of a function. There are various ways to define a limit, this way comes from

Definition 5
For function f : R→ R, write

lim
x→a

f(x) = L

if for all ε > 0, there exists a δ > 0, so that for all x satisfying |x− a| ≤ δ, it holds that |f(x)− L| ≤ ε.

Now that we have a limit, we can formally define a derivative.

Definition 6
A derivative of a function y = f(x) where x and y are real numbers is

lim
h→0

f(x+ h)− f(x)

h
,

when this limit exists.

Finally, we tackle integrals. The first kind of integral we define is when the rate function only changes
values a finite number of items in the interval.

12



Definition 7
A function f : [a, b]→ R is simple if it only changes value at a finite number of points in [a, b]. That is,
there exist a = a0 < a1 < a2 < · · · < an = b such that f is constant over (ai, ai+1). The integral of a
simple function is ∫

x∈[a,b]

f(x) dx =

n∑
i=1

f((ai + ai+1)/2)(ai+1 − ai).

Now for non-simple functions.

Definition 8
Let f : [a, b]→ R be a function such that for each i, gi ≤ f ≤ hi, where {gi} and {hi} are simple functions.
If

lim
i→∞

∫
x∈[a,b]

gi(x) dx = lim
i→∞

∫
x∈[a,b]

hi(x) dx = I,

then call I the integral of f over [a, b].

This definition is interesting because it is not entirely clear at first glance that there couldn’t be more than
one value of I that equals the limits of different sequences. In fact, it turns out that if lim

∫
gi = lim

∫
hi,

then no matter what gi ≤ f ≤ hi were chosen the common limit has to be the same value.

13



1 Introduction to the course

Question of the Day Suppose an airplane at time t is at position (10 cos(t), 10 sin(t), t). How
far does it travel in the time from t = 10 to t = 20?

Today

� What’s in the course?

� Parameterizing curves

� Understanding differentials

Calculus of several variables

� Specifically, calculus of functions of several variables

� So far, most of what you’ve done has been in one dimension

� 2 dimensional space: Google maps, images, (height,weight)

� 3 dimensional space: Needed for positions (one more dimensional for time)

� U.S. production of: steel, cars, oil, lumber, pharmaceuticals, electricity,. . .

3 main concepts

1: Differentials

� Small changes in a variable

� dx = small change in x

� dθ = small change in θ

2: Linear approximations of a function

� Curves look like lines when you zoom in on them

� Linear functions easier to work with, so approximation helpful in many ways

� In one dimension, slope of linear approximation called a derivative

� Expressed in differentials, y = f(x), f ′(x) = dy/dx.

� In higher dimensions, derivatives related to best linear approximation

3: Integrals

� Summing up terms that involve a differential.

� Finding area under a curve/probability of event/total accumulation of flow at a rate

� In higher dimensions: finding volume under a surface/finding length of curves

Example: Question of the day

� Zoom in on a curve:

14



� Pythagorean Theorem:

ds2 = dx2 + dy2

ds =
√
dx2 + dy2

� Note: Pythag. works in higher dimensions too!

ds2 = dx2 + dy2 + dz2

ds =
√
dx2 + dy2 + dz2

Parameterizing curves

� How do we find dx, dy, dz?

� First step: write x, y, and z in terms of t

� Qotd: (x(t), y(t), z(t)) = (10 cos(t), 10 sin(t), t)

� What does this look like?

� Then add in the z part and it is rising upwards

15



� Isometric viewpoint:

x′(t) =
dx

dt
, y′(t) =

dy

dt
, z′(t) =

dz

dt
Multiplying by dt:

x′(t) dt = dx, y′(t) dt = dy, z′(t) dt = dz

So that gives:

ds =
√

(x′(t) dt)2 + (y′(t) dt)2 + (z′(t) dt)2

=
√
x′(t)2dt2 + y′(t)2dt2 + z′(t)2dt2

= |dt|
√
x′(t)2 + y′(t)2 + z′(t)

� Total length =
∫
t∈[10,20]

ds =
∫
t∈[10,20]

√
x′(t)2 + y′(t)2 + z′(t)2 dt

� Note: |dt| = dt here since limits go from 10 to 20. For a < b∫ b

a

f(x) dx =

∫ a

b

f(x)(−dx) = −
∫ a

b

f(x) dx.

In general, have the following formula

Definition 9
Let (x1(t), . . . , xn(t)) be a parameterized curve where each xi(t) ∈ C1. Then the differential arc length
of the curve for t ∈ [a, b] is

ds =
√
x′1(t)2 + · · ·+ x′n(t)2 dt.

Adding up all the small pieces (differentials) of a variable is what we call integration.

Fact 1
Integrals obey ∫ t1

t=t0

ds = s(t1)− s(t0).

Adding up all the little tiny differential arc length gives the total length of the curve.
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Definition 10
The arc length of a parameterized curve is

S =

∫ b

t=a

ds =

∫ b

t=a

√
x′1(t)2 + · · ·+ x′n(t)2 dt.

� We used the calculation using Pythagorean theorem on differentials to motivate the definition, but this
is a definition, not a lemma or theorem.

� This result transforms one differential to another. Another such transformation result that you should
be familiar with is the Fundamental Theorem of Calculus. For y = f(x) ∈ C1

dy = f ′(x) dx.

� Integrals of continuous function always exist

� Need derivatives of xi to exist and be continuous

Definition 11
Say that f ∈ Ci if the ith derivative of f is continuous.

Solving the Qotd

�
x(t) = 10 cos(t), y(t) = 10 sin(t), z(t) = t,

x′(t) = −10 sin(t), y′(t) = 10 cos(t), z′(t) = 1,

So

s =

∫ 20

10

√
102 sin2(t) + 102 cos2(t) + 12 dt

=

∫ 20

10

√
101 dt = 10

√
101 ≈ 100.4

(to 4 sig figs)

Problems

1.1: Show that (0, 2) and (3, 0) are perpendicular vectors

1.2: Show that (2, 3) and (−6, 4) are perpendicular vectors.

1.3: Set up the integral to find the arclength of along the following curves:

(a) P (t) = (cos(t), sin(t)), 0 ≤ t ≤ τ
(b) P (t) = (t, t2, t3), 0 ≤ t ≤ 1

(c) P (t) = (exp(t), t,
√
t), 1 ≤ t ≤ 2

(d) P (t) = (1, 1/(1 + t)), 0 ≤ t ≤ 10

1.4: Use Wolfram Alpha to numerically solve the above integrals to 4 significant figures.
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2 Vectors, sets, and the distance formula

Question of the Day Two dune buggies leave location (0, 0), One heads for (1, 2), the other for
(−6, 3). What is the angle between them?

Today

� Determining when vectors are perpendicular

� The norm of a vector

Picture

Qotd: What is θ?

θ

Looks like θ = 90◦ = π/2. But is it?

2.1 Vectors

� Vectors are anything that can be added together or scaled.

� Examples

– Functions with one real input and one real output: x, x2 are functions, can be scaled to give 3x
and −2x2 which are also functions, which can then be added to give 3x − 2x2 which is also a
function

– Random variables: X and Y are rolls of a fair six sided die, 3X − 2Y is also a random variable

– Sequences: {ai} = 1, 2, 3, 4, . . . and {bi} = 1, 4, 9, 16, . . . are sequences, so is 1,−2,−9, . . . =
3{ai} − 2{bi}

– Points in space: a = (1, 2), b = (−6, 3), then 3a− 2b = (−3,−3).

� Unless otherwise specified, vectors in this course refer to points in space.

2.2 Sets

Definition 12
A set is an unordered collection of objects. The objects in the set are called elements of the set. The
order of elements in the set does not matter.
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Notation

� Curly braces { and } indicate a set.

� {green,red,blue} indicates green, red, and blue are the elements of the set.

� Names of sets usually capital letters. For example, A = {1, 2, 3} is a set of numbers.

� Write 1 ∈ A to indicate that 1 is an element of A.

� A space is a set that has extra structure.

� For example, the set of integers is a space that has addition and multiplication

Notation for points in space

� Often use Blackboard boldface for spaces

� Examples

– R = the set of real numbers

– Z = the set of integers

– Q = the set of rational numbers

� A point in 2-D space is represented by two real numbers

Definition 13
For sets A and B, the set of 2-tuples {(x, y) : x ∈ A, y ∈ B} is denoted by the Cartesian product or
direct product A×B.

� Example: (4,−2) ∈ {−2, 0, 2, 4} × {−2, 0, 2}, but (4, 4) is not.

� Informally, functions take input values in one set A and return an output vlaue in another set B

� Functions are computational rules

� Formally, functions are subsets of points in the Cartesian product

Definition 14
A function f from A to B (write f : A → B) is a collection of points in A × B such that if (a, b) and
(a, c) are both in A×B, then b = c.

Universal Quantifiers and set notation

� ∀: “for all” or “for every”

– (∀x > 3)(2x > 6) is true because no matter what value of x greater than 3 I choose, 2x will be
greater than 6.

– (∀x > 3)(2x > 10) is false becuase if x = 3.5, then 2x = 7 which is not greater than 10.

� ∃: “there exists”

– (∃x > 3)(2x > 6) is true. For instance, if x = 5 then 2x = 10. There only has to be at least one
value of x that makes it true for the statement to be true.

– (∃x > 3)(2x > 10) is true

– (∃x > 3)(2x < 1) is false

� Can combine them:
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– (∀y)(∃x)(x+ y > 6) is true. No matter what value of y you pick, you can choose x (for instance
x = 7− y works) so that x+ y > 6.

– (∃y)(∀x)(x+ y > 6) is false

� : = “such that”

– (∀x : |x| > 3)(x2 > 9)

Definition 15
For sets A1, . . . , An the set of n-tuples {(x1, . . . , xn) : (∀i)(xi ∈ Ai)} is denoted by the Cartesian product
A1 ×A2 × · · · ×An. When A1 = A2 = · · · = An = A, write A1 × · · · ×An = An

� In other words, a function is a set of input values in A and output values in B such that every unique
input is associated with a unique output.

Real vectors

� Ex: (3, 2) ∈ R2, (1, 2,−3) ∈ R3

� If ~v ∈ Rn, say that ~v is a real vector in n-dimensional space. Usually write just v rather than ~v

� Vectors can be added together

Definition 16
For a = (a1, . . . , an) ∈ Rn and b = (b1, . . . , bn) ∈ Rn, then a+ b = (a1 + b1, . . . , an + bn).

Example: (1, 2) + (−6, 3) = (1− 6, 2 + 3) = (−5, 5)

Vectors can be scaled:

Definition 17
For a = (a1, . . . , an) ∈ Rn and α ∈ R, αa = (αa1, . . . , αan).

Example: 2 · (1, 2) = (2 · 1, 2 · 2) = (2, 4).

Definition 18
A vector space consists of a set of vectors V and a set of scalars S such that

(∀s1, s2 ∈ S)(∀v1, v2 ∈ v)(s1v1 + s2v2 ∈ V ).

Say that vectors spaces are closed under scalar multiplication and vector addition.

Qotd: does θ = 90◦?

Theorem 1 (Pythagorean Theorem)
Let A, B, and C be the points of a triangle (so they are not colinear). Let α be the length of side AB, β
the length of side BC, and γ the length of side AC. Then α2 + β2 = γ2 if and only if the angle between
AC and BC is 90 degrees.

� Often used as: if have a right angle, then α2 + β2 = γ2.
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Qotd: What is θ?

θ

� For instance, length from (0, 0) to (−6, 3) is√
(−6− 0)2 + (3− 0)2 =

√
45

Length from (0, 0) to (1, 2): √
(1− 0)2 + (2− 0)2 =

√
5

Length from (1, 2) to (−6, 3): √
(1− (−6))2 + (2− 3)2 =

√
50.

� Since
(
√

45)2 + (
√

5)2 = (
√

50)2,

the angle is θ = π/2 ≈ 1.570 .

� In general, the length of a vector is called the Euclidean norm of that vector

Definition 19
The Euclidean norm of v = (v1, . . . , vn), written ‖v‖, equals√

v2
1 + v2

2 + · · ·+ v2
n.

This is also known as the magnitude of the vector.

Problems

2.1: What is (x, y) + (3, 4) written as a single vector?

2.2: True or false: the vectors (1, 2, 3) and (3, 2, 1) are the same vector.

2.3: The Euclidean norm of (−5, 0) is what?

2.4: List the points in {2, 3} × {−1, 0, 1}.

2.5: Write the following sums of scaled vectors as a single vector:

(a) (2, 3) + (−1, 4)

(b) (x, y) + (w, z)

(c) (2, 3) + 2(−1, 4)

(d) (x, y) + 2(w, z)

2.6: Find ‖(3,−2, 0, 2)‖.
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3 Angles between vectors

Question of the Day What is the angle between (1, 2) and (−1, 3)?

Today

� Scaling vectors

� Angles between vectors

� Orthogonal/perpendicular angles in Rn

� Correlation

Using norms

� Gave a way to check if the angle between two vectors is a right angle

� Distance formula gives a way to find lengths/Euclidean norm/L2 norm ‖v‖ = ‖v‖2
� Taxicab, or L1 norm: ‖v‖1 = |v1|+ · · ·+ |vn|

� L∞ norm, ‖v‖ = max{|v1|, |v2|, . . . , |vn|}

3.1 Scaling vectors

Scaling vectors

� One way to change a vector is to scale it (also known as multiplication)

� For v = (v1, . . . , vn) αv = (αv1, . . . , αvn)

� How does that change the norm?

‖αv‖ =
√

(αv1)2 + · · ·+ (αvn)2

=
√
α2v2

1 + · · ·+ α2v2
n

=
√
α2(v2

1 + · · ·+ v2
n)

= |α|
√
v2

1 + · · ·+ v2
n

= |α| ‖v‖

� Note that if v is scaled by the inverse of its norm, the new norm is 1:∣∣∣∣∣∣∣∣ v‖v‖
∣∣∣∣∣∣∣∣ =

‖v‖
‖v‖

= 1

Definition 20
If v is a nonzero vector, then v/ ‖v‖ is the normalization of v.
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3.2 Angles between vectors

Why this is useful in finding angles:

� Scaling v and w does not change the angle between them!

� So you might as well normalize them

� angle(v, w) = angle(v/ ‖v‖), angle(w/ ‖w‖)

� Assume without loss of generality that v = (v1, v2) and w = (w1, w2) have norm 1

� Then they lie on the unit circle: v2
1 + v2

2 = 1, w2
1 + w2

2 = 1, so the picture looks like this:

Now something interesting happens. Consider v1w1 + v2w2:

cos(θv) cos(θw) + sin(θV ) sin(θw) =

cos(−θv) cos(θw)− sin(−θV ) sin(θw) = cos(θw − θv),

but θw − θv is the angle between w and v!

� More generally,. . .

Definition 21
The dot product or inner product between two vectors v = (v1, . . . , vn) and w = (w1, . . . , wn) is

v · w = v1w1 + · · ·+ vnwn.

With this definition, it is easy to show the following.
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Fact 2
For α, β ∈ R and v, w ∈ V , (αv) · (βw) = (αβ)(v · w).

This motivates the following definition:

Definition 22
For any v, w ∈ Rn, the angle θ between v and w can be found using

cos(θ) =
v · w

‖v‖ · ‖w‖
.

Qotd :

cos(θ) =
(1, 2) · (−1, 3)

‖(1, 2)‖ ‖(−1, 3)‖
=

1(−1) + 2(3)√
5
√

10
=

5√
50

=
1√
2

=

√
2

2

That makes θ = π/4 ≈ 0.7853

3.3 Norm of a vector

Definition 23
For vector space V , say that ‖·‖ : V → R≥0 is a norm if the following three properties hold:

1: (∀α ∈ R)(∀v ∈ V )(‖αv‖ = |α| ‖v‖)

2: (∀v, w ∈ V )(‖v + w‖ ≤ ‖v‖+ ‖w‖) (triangle inequality)

3: (∀v)(‖v‖ = 0→ v = 0)

This gives rise to the following notion of orthogonality (which means same as perpendicular in Rn)

Definition 24
Say that v and w are orthogonal or perpendicular if v · w = 0.

3.4 Angles between random variables

� Points in space are vectors

� Random variables in probability are also vectors

� Ex: X ∼ Unif{1, 2, 3, 4, 5, 6} if P(X = 1) = P(X = 2) = · · · = P(X = 6) = 1/6.

� The average value of a random variable is the sum of the values it takes on times the probability it
takes on those values.

E[X] = (1/6)(1) + (1/6)(2) + · · ·+ (1/6)(6) = 3.5

E[X2] = (1/6)(12) + (1/6)(22) + · · ·+ (1/6)(62) =
91

6
= 15.1666 . . .

� Then the inner product between X and Y is defined to be:

E[XY ]− E[X]E[Y ].

In probability this has a special name, it is the covariance between X and Y .
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� The norm of X is called the standard deviation, and is

SD(X) =
√
E[X2]− E[X]2

� The cosine of the angle between X and Y is then

Cov(X,Y )

SD(X) SD(Y )

and in probability this is called the correlation. Because it is the cosine of an angle, it must lie
between 0 and 1.

� Orthogonal random variables X and Y are called uncorrelated.

Problems

3.1: What is (x, y) · (3, 4)?

3.2: What is (3)(3,−2)?

3.3: What is c(3,−2) where c ∈ R?

3.4: What is the cosine of the angle between (1, 0) and (0, 1)?

3.5: If v and w are perpendicular, what is v · w?

3.6: (a) What is (2, 3) · (−1,−1)?

(b) What is (1, 0,−1) · (7, 3, 4)?

(c) What is (x, y) · (2,−2)?

3.7: Find the angle between vectors (2, 3) and (−1,−4).
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4 Differentiation of Curves

Question of the Day At time t, an airplane is at position (10 cos(t), 10 sin(t), t). What is the
velocity at time t?

Today

� Linear approximation to parameterized curves

Some physics:

� The derivative of position is velocity

– Velocity is itself a vector with direction and magnitude

� The derivative of velocity is acceleration

Parameterized curves

� Parameter is a name for the common input to several functions

� Notation: x 7→ x2 (read as: x maps to x2) means f(x) = x2.

� P (t) = (x(t), y(t), z(t)) is a curve parameterized with t

Definition 25
A parameterized curve P (t) = (v1(t), . . . , vn(t)) is continuous if each vi(t) is continuous.

Derivatives

� Recall the definition of a derivative (:= means defined as)

f ′(t) := lim
h→0

f(x+ h)− f(x)

h
.

Remember that the slope of a line is rise over run. Here the rise is the change in the output value:
f(x+ h)− f(x). The run is the change in the input value: (x+ h)− x = h.)

� Try that with the parameterized curve:

P ′(t) = lim
h→0

P (t+ h)− P (t)

h

= lim
h→0

(x(t+ h), y(t+ h), z(t+ h))− (x(t), y(t), z(t))

h

= lim
h→0

(
x(t+ h)− x(t)

h
,
y(t+ h)− y(t)

h
,
z(t+ h)− z(t)

h

)
= (x′(t), y′(t), z′(t))

� Rule easy: differentiate vectors component wise!

Qotd

P (t) = (10 cos(t), 10 sin(t), t) position

P ′(t) = (−10 sin(t), 10 cos(t), 1) velocity

P ′′(t) = (−10 cos(t),−10 sin(t), 0) acceleration
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More physics

� Speed is the magnitude of velocity = ‖P ′(t)‖.

� Distance traveled = speed · time traveled.

� Differential distance traveled is ds = ‖P ′(t)‖ dt, where

‖P ′(t)‖ =
√
x′(t)2 + y′(t)2 + z′(t)2.

� Same answer we got for differential arc length earlier!

4.1 Rules for differentation

Fact 3
Let f, g,∈ C1. Then

1:
d

dt
(f + g) =

df

dt
+
dg

dt

2: For all c ∈ R,
d(cf)

dt
= c

df

dt

3:
d(fg)

dt
= fg′ + f ′g

� These first two properties make differentiation of curves a linear operator. (Note that operator is yet
another term for function.

Definition 26
An operator L : A→ B where A and B are vector spaces is a linear operator if

(∀a, b ∈ R)(∀x, y ∈ A)(L(ax+ by) = aL(x) + bL(y)).

� Any time you can pull out constants and split up additions, you have a linear operator.

� Example: differentiation
[3x+ 2x2]′ = 3[x]′ + 2[x2]′

� Example: integration ∫ 2

0

3x+ 2x2 dx = 3

∫ 2

0

x dx+ 2

∫ 2

0

x2 dx.

� Example: multiplying real numbers by 4

4(3x+ 2y) = 12x+ 8y = 3(4x) + 2(4y).

Definition 27
A parameterized curve P (t) = (v1(t), . . . , vn(t)) is in class Ci if the ith derivative of P (t) exists and is
continuous.
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Fact 4
Let P,Q : R→ Rn be in C1. Then

1:
d

dt
(P +Q) =

dP

dt
+
dQ

dt

2: For all c ∈ R,
d(cP )

dt
= c

dP

dt

3:
d(P ·Q)

dt
= P ·Q′ + P ′ ·Q

� Note P , P ′, Q, Q′ are all vectors, so · means dot product here.

Example:

� What is the derivative of ‖X(t)‖2 = X(t) ·X(t)?

� Use the product rule:

d(X(t) ·X(t))

dt
= [X(t)]′ ·X(t) +X(t) ·X ′(t)

= 2X ′(t) ·X(t).

� Physics interpretation: X(t) is velocity, X ′(t) is acceleration, ‖X(t)‖ is speed.

� Speed is constant iff speed squared is constant.
(iff equals if and only if)

� Speed squared is constant iff [‖X(t)‖2]′ = 0

� [‖X(t)‖2]′ = 0 iff 2X ′(t) ·X(t) = 0 iff X ′(t) orthogonal to X(t)

� Example: rock tied to a string swinging around your head. The acceleration is perpendicular to the
direction of motion, so the speed of the rock does not change.

� One more rule, for product of function times parameterized curve...

Fact 5 (Mixed product rule)
Say f(t) : R→ R and P (t) : Rn → R are in C1, then

d(f(t)P (t))

dt
= f(t)P ′(t) + f ′(t)P (t).

� Nothing new to remember, same as normal product rule!

� Example:

d

dt
(P + e2tQ) = P ′ +

d(e2tQ)

dt

= P ′ + e2tQ′ + 2e2tQ.

4.2 Linear approximation of curves

Recall linear approximation of function:

f(x) ≈ f(x0) + (x− x0)f ′(x0).

� RHS (right hand side) is called the tangent line to the curve.
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Same idea for paramerized curves

Definition 28
The tangent line to a parameterized curve P (t) at P (t0) is

P1(t) = P (t0) + (t− t0)P ′(t0)

Example: For P (t) = (cos(t), sin(t)), what is the tangent line at t0 = π/3?

� P (t) = (cos(t), sin(t)), so P ′(t) = (− sin(t), cos(t))
P (π/3) = (1/2,

√
3/2), P ′(π/3) = (−

√
3/2, 1/2)

So the answer is:

`(t) = (1/2,
√

3/2) + (t− π/3)(−
√

3/2, 1/2)

= (1/2 + π
√

3/6− t
√

3/2,
√

3/2− π/6 + t/2)

� Check in WA

parametric plot (cos(t),sin(t)) and (1/2+pi*sqrt(3)/6-t*sqrt(3)/2,

sqrt(3)/2-pi/6+t/2) for t from -2pi to 2pi

Problems

4.1: True or false: Speed at a point is always a real number.

4.2: True or false: Let f(x, y) = 2x+ xy2. Then f ∈ C1.

4.3: State whether or not the following parameterized curves are in C1.

(a) P (t) = (t, t2, et)

(b) P (t) = (|t|, sin(t))

4.4: A particle moves along a trajectory so that at time t its location is (t, t2, exp(t)).

(a) What is its velocity at time t = 1?

(b) What is its acceleration at time t = 1?

(c) What is its speed at time t = 1?

4.5: For P (t) = (sin(t), t2), find the tangent line to P at t = 0.
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4.6: Suppose that a particle has a circular path parameterized by

C(t) = ((3
√

3/2) sin(t), ((3
√

3/2) cos(t)).

(a) Find the velocity of the particle at t = τ/4.

(b) Find the speed of the particle at t = τ/4.

(c) Find the acceleration of the particle at t = τ/4.

(d) Write the equation of the tangent line to the path at t = τ/4.
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5 Level sets and partial derivatives

Question of the Day How can higher dimensional functions be visualized?

Today

� Types of functions

� Multiple inputs, multiple outputs

� Level sets

� Partial derivatives

Function idea A function takes one or more inputs, does some computation, and then returns one or
more outputs. Depending on how many inputs (and how many outputs, these can be described in various
ways.

� Curves in the plane: P : R1 → R2

Input is time, output is a point in the 2D plane

� Curves in space: P : R1 → R3

Input is time, output is a point in 3D space

� Surface over Plane: f : R2 → R1

Input is point in 2D plane, output is the height above the plane
Example: Topographical map giving altitude at every location Example functions:

f(x, y) = x2 + y2

f(a, b) = ab+ cos(a)

f(x1, x2) = x1 − x2 + x1x2

� Real-valued function: f : Rn → R

� Sketching the graph can be difficult, in WA:

plot x_1 - x_2 + x_1 x_2 for x_1 from 0 to 1 and x_2 from 0 to 1

� Visualization even tougher in 3D

f(x, y, z) = x2 + y2 + z2

f(x1, x2, x3) = x1 − x2 + 3x3
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Level curves

� Topographical map draws lines where the elevation is equal

� Ex: Connect all points at 8300 feet

� Lines form distorted circles around peaks

� In mathematics, these lines are called level sets.

Definition 29
The set of points for which f(x, y) = c is called the level curve of f at c.

Example

f(x, y) = x2 + y2

Level curve = {(x, y) : x2 + y2 = c}.

x2 + y2 = 2

x2 + y2 = 1

� All the level curves of this function are concentric circles.

� When f : R3 → R, then level sets are level surfaces.

Definition 30
The set of points for which f(x, y, z) = c is called the level surface of f at c.
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5.1 Partial derivatives

� In this subsection, assume f only has one output, so f : Rn → R.

� A function f : R2 → R can be viewed as a height map.

� If at location (x, y), could try climbing in x direction, or y direction.

� How steep is the mountain in these directions?

� First: need to know that can climb a little bit in any direction.

When all of the elements of A are also in B, then we say that A is a subset of B

Definition 31
The set A is a subset of B (write A ⊆ B) if

(∀a ∈ A)(a ∈ B).

Recall: ∀ = for all, ∃ = there exists

Definition 32
A set U ⊆ Rn is an open set if

(∀v ∈ U)(∃a > 0)(∀w : ‖v − w‖ < a)(w ∈ U)

� In words: a set U is open if for all points v in U , there is a measure of closeness a such that if a point
w is within distance a of v, then w is also in U .

� Picture:

v
a

w

U

U open

dotted line means boundary is not in W

W not open

solid line means boundary is in W

v

Circle contains
points not in W

Definition 33
Let ei be the vector that is 1 is coordinate i, and is 0 elsewhere. Let f : U → R, where U ∈ Rn is an open
set, and x ∈ U . Then the partial derivative of f with respect to xi is

∂f

∂xi
= lim
h→0

f(x+ h · ei)− f(x)

h

when this limit exists.

� The ei vector is used to ensure that we are looking in the ith coordinate value.

� The ∂ symbol can be read as “dell” or “partial”.
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Practical partial derivatives

� No one uses limit definition to find derivatives

� No one uses limit definition to find partial derivatives

� To find partial derivative with respect to xi, treat all other variables as constants.

� Example: find ∂(xy2)/∂x.

– Treat y2 as a constant, ∂(xy2)/∂x = y2.

� Example: find ∂(xy2)/∂y.

– Treat x as a constant, ∂(xy2)/∂y = 2xy.

The gradient of a function collects all the partial derivatives together into a vector.

Definition 34
The gradient of a function f : Rn → R is

grad(f) = ∇f :=

(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

)
.

� Find the gradient of f(a, b, c, d) = ab+ 2cd

� Answer: ∇f = (b, a, 2d, 2c)

Problems

5.1: Graph the level sets of x = (1/2)y2.

5.2: Find the following partial derivatives.

(a) ∂(x2y)/∂x.

(b) ∂(x2y)/∂y.

(c) ∂(x2y)/∂z.

(d) ∂(exp(−2x))/∂x.

(e) ∂(r/w)/∂r.

5.3: Find the following partial derivatives.

(a) ∂[x2y + 2y]/∂y.

(b) ∂[x2y + 2y]/∂x.

(c) ∂[x2y + 2y]/∂z.
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6 Proofs and limits

Question of the Day Show that lim(x,y)→(1,1) 1 + x+ y = 3 using the definition of limit.

Today

� Limits of real-valued functions

� Introduction to logic and proofs

Definition 35
A function f : A→ B is real-valued if B ⊆ R.

� Real valued functions can be optimized, and might have limits.

� What does limx→a f(x) = L mean? Assume f : Rn → R is real-valued, and x, a ∈ Rn.

� It means that as x gets close to a, then f(x) gets close to L.

� The distance from x to a is ‖x− a‖. The distance from f(x) to L is |f(x)− L|.

� More precisely, limx∈a f(x) = L means that we can play the following game. I specify how close I want
f(x) to L, then can you can find a distance such that for x within your distance of a, f(x) is within
that distance of L.

� Use ε for my distance (how close f(x) is to L) and δ for your distance (how close x is to a).

� Formal definition (note ⇔ means if and only if)

Definition 36
The limit as x approaches a of f(x) equals L means

lim
x→a

f(x) = L⇔ (∀ε > 0)(∃δ)(∀x : ‖x− a‖ < δ)(|f(x)− L| ≤ ε).

� How can I use this definition to do proofs?

� For instance, how do I prove the qotd?

� Start simpler: Prove (∀ε > 0)(2ε > 0).

– When you see a “forall” symbol, you have to instantiate the quantifier. This means that we
assume ε is an arbitrary number that is at least 0.

Proof Let ε > 0.

– Then you can use algebra to get to the final answer. In this case, multiplying by 2 gets to the
final step, so the complete proof is:

Proof Let ε > 0.
Then 2ε > 0 (by multiplying both sides by 2). .

– The symbol is one way to indicate that a proof is finished.

– Also can write Q.E.D. for quad erat demonstratum.
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Working with ∃

� You get to pick anything you want as long as it works.

� Ex: Prove (∃x)(2x > 15).

– The last line of the proof will be: “So 2x > 15. ”

– The first line of the proof will be: Let x =, and I get to choose what x equals.

Proof Let x =
Then 2x > 15.

– Since I get to pick x, I will pick x = 10. Then 2x = 20, and I’m done. Here’s the final proof:

Proof Let x = 10
Then 2x = 20 > 15.

Combining ∀ and ∃

� Here’s where it gets interesting, when you combine for all and there exists.

� Example: prove (∀x)(∃y)(x+ y > 10)

– The overall framework of the proof will look like this:

Proof Let x ∈ R
Let y =
[Stuff happens]
Then x+ y > 10.

– Note that I cannot pick a single y that works for all x. For instance, if y = 10, but x = −2, then
x+ y = 8 ≤ 10. So y must depend on x.

– Time for some side work: if x+y > 10, then y > −x+10. What is a number bigger than −x+10?
How about −x+ 11? Try this out!

Proof Let x ∈ R
Let y = −x+ 11
Then x+ y = 11 > 10.

� Another successful proof!

Question of the Day

� Want to show that:

(∀ε > 0)(∃δ)(∀(x, y) : ‖(x, y)− (1, 1)‖ < δ)(|1 + x+ y − 3| ≤ ε)

� The proof will look like:

Proof Let ε > 0
Let δ =
Then (x, y) be such that ‖(x, y)− (1, 1)‖ < δ.
[Stuff happens]
Then 1 + x+ y ∈ [3− ε, 3 + ε].

� To understand how to choose δ, we need to bound |1 + x+ y − 3| for ‖(x, y)− (1, 1)‖ < δ. Now

‖(x, y)− (1, 1)‖ < δ ⇒ (x− 1)2 + (y − 1)2 < δ,

so |x− 1| <
√
δ and |y − 1| <

√
δ.
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� Equivalently, x ∈ [1−
√
δ, 1 +

√
δ], y ∈ [1−

√
δ, 1 +

√
δ].

� In inequality form:
1−
√
δ ≤ x ≤ 1 +

√
δ, 1−

√
δ ≤ y ≤ 1 +

√
δ.

� Adding together and adding 1 gives

3− 2
√
δ ≤ 1 + x+ y ≤ 3 + 2

√
δ.

So 1 + x+ y ∈ [3− 2
√
δ, 3 + 2

√
δ].

� Want 1 + x+ y ∈ [3− ε, 3 + ε].

� Let 2
√
δ = ε, so δ = (ε/2)2, then result holds! Now to work in reverse and write out the steps of the

proof one by one:

Proof Let ε > 0
Let δ = (ε/2)2

Then (x, y) be such that ‖(x, y)− (1, 1)‖ < δ.
Then (x− 1)2 + (y − 1)2 < δ.

So |x− 1| ≤
√
δ = ε/2 and |y − 1| ≤

√
δ = ε/2.

So x ∈ [1− ε/2, 1 + ε/2] and y ∈ [1− ε/2, 1 + ε/2].
Since 1 + x+ y is an increasing function of x and y,
1 + x+ y ∈ [3− ε, 3 + ε], and we are done! .

Limits for real-valued functions obey similar rules as for 1D limits.

Fact 6
Limits for functions from Rn to R are linear operators. So if limx→a f(x) = L and limx→a g(x) = M , then
for any a, b ∈ R,

lim
x→a

af(x) + bg(x) = aL+ bM.

Problems

6.1: Prove the following:
(∃x)(2x = 10)

6.2: Prove that lim(x,y)→(0,0) 1− x+ y = 0.

37



7 Using partial derivatives of real-valued functions

Question of the Day Find the best linear approximation to

f(x, y) = x2y at (x, y) = (3, 4).

Today

� Linear approximations of real-valued functions.

� Order of second derivatives doesn’t matter

� Chain rule for curves

7.1 Linear approximations

Recall differential conversions:

dy = f ′ dx FTC

ds = ‖P ′(x)‖ dt arclength

dy = ∇f · dx generalized FTC

For the last equation, x = (x1, x2, . . . , xn). Note:

y + dy = f(x+ dx),

which has picture:

fx y

so using the derivative:
y +∇f · dx = f(x) +∇f · dx

Setting dx = h gives approximations:

f1(x+ h) = f(x) + f ′(x)h 1 dimension

f1(x+ h) = f(x) +∇f · h n dimensions

Recall

� For f : R→ R, best linear approximation to f is

f1(x+ h) = f(x) + f ′(x)h.

� When h = 0, gives f1(x) = f(x) and f ′1(x) = f ′(x).

Definition 37
Little o of g(x) (written o(g(x))) is the set of functions

o(g(x)) =
{
f : lim

x→0
f(x)/g(x) = 0

}
.

� Ex: x2 ∈ o(x) since limx→0 x
2/x = limx→0 x = 0.

� Notation abuse: often write x2 = o(x) instead of x2 ∈ o(x).

� f = o(g) means that f goes to 0 faster than g goes to 0.
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Fact 7
For f ∈ C1, f(x+ h) = f(x) + f ′(x)h+ o(h).

x

h

error = o(h)

This is the best way of thinking of the derivative for functions f : Rn → R:

Definition 38
Say that f : Rn → R is differentiable at x0 if ∇f exists, and for h ∈ Rn,

f(x+ h) = f(x) +∇f(x) · h+ ‖h‖ g(h),

where limh→0 g(h) = 0.

Qotd

� Start with f(x, y) = x2y.

� Then ∇ = (∂/∂x, ∂/∂y), so

∇f =

(
∂f

∂x
,
∂f

∂y

)
= (2xy, x2).

� So
f1(x+ h) = f(x) +∇f · h

which for x = (3, 4) and h = (hx, hy) makes

f((3 + hx, 4 + hy)) = (32)(4) + (2 · 3 · 4, 32) · (hx, hy)

= 36 + 24hx + 9hy .

� I know this is a linear approximation because hx and hy are being raised to the 1st power.

� Some not linear functions of hx and hy:

h2
x + hy, sin(hx), hxhy

7.2 Interchanging order of partial derivatives

Definition 39
For f that maps (x1, . . . , xn) ∈ Rn to y ∈ R, let Di denote the partial derivative of f with respect to xi.

� Ex: For f(x, y, z), D2f = ∂f/∂y.

� D2f · dy is about how much f changes when y is changed by dy

� D1f · dx is about how much f changes when x is changed by dx.
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� So D2(D1f) · dx dy is about how much f changes when x is changed by dx and then y changed by dy

� Also, D1(D2f) · dy dx is about how much f changes when y is changed by dy and then x changed by
dx

� So f(x+ dx, y + dy) = f(x, y) +D2D1f dx dy and
f(x+ dx, y + dy) = f(x, y) +D1D2f dx dy.

� So D1D2f = D2D1f .

Fact 8
Let f : U → R where U ⊂ R2 is open. If D1f,D2f,D1D2f, and D2D1f exist and are continuous, then

D1D2f = D2D1f.

Example
f(x, y) = x2y + sin(y),

D1f =
∂f

dx
= 2xy D2f =

∂f

∂y
= x2 + cos(y)

D2D1f =
∂

∂y
(2xy) = 2x D1D2f =

∂

∂x
(x2 + cos(y)) = 2x.

Notation (
∂

∂x

)2

f =
∂

∂x

∂f

∂x
=
∂2f

∂x2
.

� This last in general does not equal
(
∂f
∂x

)2

.

� Ex: f(x, y) = x2y + sin(y)

∂f

dx
= 2x⇒

(
∂f

∂x

)2

= 4x2,
∂2f

∂x2
= 2.

7.3 The Chain Rule

1D chain rule
y = f(x), z = g(y) = g(f(x)) = g ◦ f(x)

In picture form:

fx y g z

dx

dy dz

Then:
dz

dx
=
dz

dy
· dy
dx
.

How much does z change when x changes? Change in x changes y, change in y changes z. Inputless way to
say it:

[g ◦ f ]′ = (g′ ◦ f)f ′

� Ex: What is d(exp(x2))/dx?
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� g = exp, f(x) = x2, g′ = exp, f ′(x) = 2x, so

d(exp(x2))

dx
= (g′ ◦ f)f ′ = exp(x2) · 2x.

So how does it work for curves? Same idea, but ∇g for derivative of g, and C ′ for derivative of C.

Fact 9 (Chain Rule for curves)
Let C(t) : R1 → U , g : U → R, U ⊂ Rn is open, C, g ∈ C1. Then (g ◦ C)(t) = g(C(t)) ∈ C1, and

[g ◦ C]′ = ((∇g) ◦ C) · C ′

Notation For n = 3:

∇g =

(
∂g

∂x
,
∂g

∂y
,
∂g

∂z

)
, C ′(t) =

(
dx

dt
,
dy

dt
,
dz

dt

)
So

∇g · C ′ =
∂g

∂x

dx

dt
+
∂g

∂y

dy

dt
+
∂g

∂z

dz

dt
.

� Ex: C(t) = (et, t, t2), f(x, y, z) = x2yz. Find d
dtf(C(t)).

� Method 1: Chain Rule:
∂f

∂x
= 2xyz,

∂f

∂y
= x2z,

∂f

∂z
= x2y.

dx

dt
= et,

dy

dt
= 1,

dz

dt
= 2t.

((∇f) ◦ C)(t) · C ′(t) = (2(et)(t)(t2), (et)2(t2), (et)2(t)) · (et, 1, 2t)
= 2e2tt3 + e2tt2 + e2t(2t2)

= e2t(2t3 + 3t2).

� Note, don’t actually need Chain Rule for curves to find derivative!

� Method 2: First find f(C(t)), then differentiate:

f(et, t, t2) = (et)2(t)(t2) = e2tt3

[f(et, t, t2)]′ = e2t[t3]′ + [e2t]′t3 = 3t2e2t + 2t3e2t.

Problems

7.1: (a) Find the best linear approximation for f(x, y) = sin(x+ 2y) near (π, 0).

(b) Use your approximation to estimate sin(x+ 2y) at (x, y) = (π + 0.1, 0.1).
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8 Tangent Planes

Question of the Day Find the tangent plane to the surface x2 + y2 + z2 = 3 at (1, 1, 1).

Today

� Implicit and Explicit Function

� How to parameterize a plane

� Tangent plane as a linear approximation

� Directional derivatives

8.1 Explicit and Implicit Functions

A function can be thought of as a set of points:

� Example: f(x) = x2 can be viewed as points (x, x2) for x ∈ R.

� Graph of the function is just the plot of this set of points.

� Say that f(x) = x2 is an explicit function.

Another way to describe a set of points is by an equation that the points satisfy:

� Example: x2 + y2 = 2 is a circle of radius
√

2.

Definition 40
A set of points S is an implicit function if there is a function f : Rn → R and c ∈ R such that

S = {(x1, x2, . . . , xn) : f(x1, . . . , xn) = c}.

If n = 2 then it is an implicit curve, and if n = 3 it is an implicit surface.

� Example of explicit functions:

f(x) = x2, g(x) = sin(x), h(x) = x exp(−x).

� Examples of implicit functions
x2 + y2 = 2, 3x+ y2 − z2 = 1.

8.2 Parameterizing a plane

A plane can be described as the set of points that are perpendicular to a special vector, called the normal
vector
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� When n = (0, 0, 1), plane is x− y plane

� When n = (1, 1, 4), plane is tilted slightly

� Recall: v and n are pependicular if v · n = 0

� n = (0, 0, 1), (x, y, z) · (0, 0, 1) = z. So plane is z = 0

� n = (1, 1, 4), (x, y, z) · (1, 1, 4) = x+ y + 4z. So plane is x+ y + 4z = 0 .

� Other direction: plane 3x−2y+z = 0. Normal vector read from coefficients of equation: n = (3,−2, 1).

� To make the plane go through points other than (0, 0, 0), add a constant to right hand side.

� What is the equation of a plane with normal vector (2, 1,−3) that passes through point (1, 0, 1)?

� Answer:

– 2x+ y − 3z = 0 passes through (0, 0, 0).

– 2(1) + (0)− 3(1) = −1

– So 2x+ y − 3z = −1 passes through (1, 0, 1) and has the correct normal vector.

� The plane defined by 2x + y − 3z = −1 for some constant a, it an implict way of defining the plane.
z = (2/3)x+ (1/3)y + (1/3) is an explicit way of defining the plane.

8.3 Tangent planes to implicit surfaces

� Want tangent plane to surface given by f(x, y, z) = x2 + y2 + z2 = 3

� Note that the surface is defined implicitly.

� This is the surface of a sphere of radius
√

3.

� We know the plane is going to have the implicit form

g(x, y, z) = c1x+ c2y + c3z = c4.

� To make derivatives match those of f , want ∇g = ∇f at (1, 1, 1).

� ∇f = (2x, 2y, 2z), so ∇f(1, 1, 1) = (2, 2, 2).

� Hence g(x, y, z) = 2x+ 2y + 2z.

� How do we find c4? Want g(1, 1, 1) = 3, so 2(1) + 2(1) + 2(1) = 6.

Definition 41
The tangent plane to the implicit surface f(v) = k at v0 (where f ∈ C1) is the implicit plane

∇f(v0) · (x, y, z) = ∇f(v0) · v0.

Example

� Example: Find the tangent plane to the implicit surface

xy + yz + zy = 6 at (1, 6, 0).

� Steps:

– Let f(x, y, z) = xy + yz + xz, v0 = (1, 6, 0)

– Find ∇f = (y + z, x+ z, x+ y)

– Find ∇f(v0) = (6, 1, 7)

– Use formula: (6, 1, 7) · (x, y, z) = (6, 1, 7) · (1, 6, 0) gives:

6x+ y + 7z = 12
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Same technique works for implicit curves

� Find the tangent line to the implicit curve x2y + y3 = 10 at (1, 2).

� Steps

– Let f(x, y) = x2y + y3, v0 = (1, 2)

– ∇f = (2xy, x2 + 3y2)

– ∇f(v0) = (4, 13)

– Formula: (4, 13) · (x, y) = (4, 13) · (1, 2):

4x+ 13y = 30 .

(This is the implicit equation of a line.)

� If the question was: find the explicit form of the tangent line for x2y + y3 = 10 at (1, 2), the answer
would be:

y = −(4/13)x+ (30/13).

8.4 Directional derivatives

� Start with f : Rn → R

� Dif is how fast f changes as variable xi changes

� What if more than one variable changing, one variable could be changing faster than the other...

f(x+ dx, y + dy, z + 2dz) = f(x, y, z) +
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
(2dz)

= f(x, y, z) +∇f · (dx, dy, 2dz)

� ∇f · (dx, dy, 2dz) is the directional differential

Definition 42
Let w 6= 0. The directional derivative of f ∈ C1 in the direction w at v is

Dwf(v) := ∇f(v) · w/ ‖w‖ .

Fact 10
For f ∈ C1, let g(t) = f(v + tw). Then

Dwf(v) = g′(t).

Example:

� Let f(x, y) = x2 + y3 and let w = (1, 2). Find the directional derivative of f in the direction w at
(−1, 3).

∇f(x, y) = (2x, 3y2)

∇f(−1, 3) = (−2, 27)

∇f(−1, 3) · w

‖w‖
=

(−2, 27) · (1, 2)√
12 + 22

=
−2 + 54√

5
=

52√
5
≈ 23.25 .
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What maximizes the directional derivative?

� Directional derivative of the form ∇f · w. What direction for w maximizes the dot product?

� Recall: cos(θ) = v·w
‖v‖·‖w‖ , so

v · w = cos(θ) ‖v‖ ‖w‖ .

� So for ‖v‖ and ‖w‖ fixed, the maximum occurs when cos(θ) is as large as possible, θ = 0, cos(θ) = 1

� θ = 0 means w and ∇f are pointing in the same direction.

� Idea: to increase f the fastest, move in the direction ∇f .

� For optimizing f , this gives the steepest ascent method.

Steepest Ascent step Input: x ∈ Rn, α ∈ R, Output: x ∈ Rn

1) Let x← x+ α∇f(x)

Problems

8.1: Are the following sets of points written as explicit functions or as implicit functions?

(a) y = 2x+ 3

(b) x2 + y2 = 4

(c) z = x exp(−xy)

(d) x exp(−xy)− z = 0

8.2: Find the tangent plane to x2 + y2 + 2z2 = 7 at the point (1, 2, 1)

8.3: Find the tangent line to x3 − y2 = −1 at the point (2, 3).

8.4: Find the directional derivative of f(x, y) = (x2, exp(y)) in the direction (1,−1) from point (2, 0).
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9 Rotational Symmetry and the Laplace operator

Question of the Day Show that for v = (x, y, z) ∈ R3,

h(v) =
−2k

(x2 + y2 + z2)2

is a rotationally symmetric function for any constant k.

Today

� Rotationally symmetric functions

� Harmonic functions

9.1 Rotational symmetry

Definition 43
The distance function is

r(x1, x2, . . . , xn) =
√
x2

1 + · · ·+ x2
n = ‖(x1, . . . , xn)‖ .

Definition 44
A real valued function is rotationally symmetric if

f(v) = g(r), where r = ‖v‖ .

� So the output of rotationally symmetric functions only depends on the distance from the origin

� Ex: Gravity from the sun, electric field from an electron

� Ex: Light from a lamp

� Ex: probability density of independent normal random variables

Steepest ascent for rotationally symmetric functions

grad f = ∇f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
∂f

∂x
=
∂g(r)

∂x
=
dg

dr
· ∂r
∂x

= g′(r) · ∂
∂x

(x2 + y2 + z2)1/2

= g′(r) · 2x(1/2)(x2 + y2 + z2)−1/2 =
g′(r)

r
x.

Can do same thing for y and z. . .
∂f

∂y
=
g′(r)

r
y,

∂f

∂z
=
g′(r)

r
z.

Putting it all together gives. . .

Fact 11
For a rotationally symmetric function f(v) = g(r) (where r = ‖v‖),

∇f(v) =
g′(r)

r
v.
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� For rotationally symmetric functions, the steepest ascent direction is always directly away from the
origin, or directly towards the origin.

� For gravity, a small object initally at rest, falls inward straight towards the larger object.

� To decrease the light received from a lamp the quickest, move directly away from the lamp.

� If f(v) = g(r), then ∇f(v) = g′(r)
r v. Here’s the interesting part: its an iff statement. If ∇f(v) =

( g
′(r)
/ r), then f(v) is rotationally symmetric.

Fact 12 (Rotational symmetry)
A function f is rotationally symmetric if and only if ∇f(v) = h(r)v for some function h.

� Qotd: Show h(v) = [−2k/(x2 + y2 + z2)2].

� Method 1: Write h(v) = g(r).

r2 = x2 + y2 + z2 ⇒ h(v) = −2k/(r2)2 = −2k/r4.

� Method 2: Find ∇h(v), show that it is proportional to v.

∂h(v)

∂x
= −2k · (−2)(2x)(x2 + y2 + z2)−3 = −4kx/r3/2,

∂h(v)

∂y
= −2k · (−2)(2y)(x2 + y2 + z2)−3 = −4ky/r3/2,

∂h(v)

∂z
= −2k · (−2)(2z)(x2 + y2 + z2)−3 = −4kz/r3/2,

∇h(v) = −4k/r3/2 (x, y, z) .

9.2 Laplace operator

� Recall: ∇ = (∂/∂x, ∂/∂y, ∂/∂z).

� So ∇f = (∂f/∂x, ∂f/∂y, ∂f/∂z)

� Finally

∇ · ∇f =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
·
(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
=
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
.

Definition 45
The Laplace operator (written ∇ · ∇, ∇2, or ∆), is given by

∇2f =
∂2f

∂x2
1

+ · · ·+ ∂2f

∂x2
n

,

in n dimensions.

� The Laplace operator arises in steady state problems.

� For instance, suppose a drum has a skin stretched over a rim. If f(x, y, t) is the height of the skin at
location (x, y) at time t, then the physics of the problem gives the pde:

∂2

∂t2
f = c2

(
∂2

∂x2
+

∂2

∂y2

)
= c2∇2f.
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� Arises with fluid mixing to steady state as well.

� Shows up in image restoration models.

Definition 46
A function f is harmonic if

∇2f = 0

Example:

� Let f(x, y) = 1/r3. Find ∆f .

� Now r = (x2 + y2 + z2)1/2, so

∂r/∂x = (1/2)(x2 + y2 + z2)−1/2(2x) = x/r.

[Similarly,
∂r/∂y = y/r, ∂r/∂z = z/r.

� So

∂2f

∂x2
=

1

r5

d(−3x)

dx
+ (−3x)

∂(r−5)

∂x
[Product Rule]

=
1

r5
(−3) + (−3x)

d(r−5)

dr
· ∂r
∂x

[Chain Rule]

=
−3

r5
− 3x · −5

r6

x

r

=
−3

r5
+

15x2

r7
.

� Repeating for y and z gives:

∇2f =
15x2

r7
− 3

r5
+

15y2

r7
− 3

r5
+

15z2

r7
− 3

r5

=
15(x2 + y2 + z2)

r7
− 9

r5

=
6

r5
.

Problems

9.1: What is ∆(x2 + y2)?

9.2: Be sure to justify your answers.

(a) Is f(x, y, z) = (x2 + y2 + 2z2)−1 rotationally symmetric?

(b) Is f(x, y, z) = (x2 + y2 + z2)−1 rotationally symmetric?

(c) Suppose f : Rn → R can be written as f(v) = 1/ ‖v‖2. Find the gradient of f .
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10 Optimizing functions in 1 dimension

Question of the Day What is the maximum value of f(x) = x exp(−x) for x ∈ [0, 3]?

Today

� Boundedness theorem

� Extreme value theorem

10.1 Optimizing continuous functions over a compact set

� Closed bounded intervals have special properties

Definition 47
A set of real numbers A is bounded if there exists finite M such that |a| ≤ M for all a ∈ A. A set that
is not bounded is called unbounded.

� Example: [−3, 4], (−3, 4] and (−3, 4) are bounded

� Example: (−∞, 2) and [0,∞) are unbounded. (Basically look for the ∞ in one dimension.)

Definition 48
A set of real numbers A is closed if the complement of A, AC = {a : a /∈ A}, is open.

� Example: (−∞, 4] is closed, because the complement (4,∞) is open.

� Example: (−3, 4) is not closed, because the complement (−∞, 3] ∪ [4,∞) is not open.

� Example: R = (−∞,∞) and ∅ are both open and closed. They are the only two sets that are both
open and closed.

Definition 49
An interval that is both closed and bounded is called compact.

� When an interval is not compact, continuous functions can fly off to infinity (or negative infinity)

� Example: f1(x) = 1/x for x ∈ (0,∞) can be arbitrarily large

� Example: f2(x) = x for x ∈ [1,∞) can be arbitrarily large

� Both these examples have bounded range over compact intervals though.

Theorem 2 (Extreme Value Theorem)
Let f be continuous over the compact set A. Then

(∃c, d ∈ A)(∀x ∈ A)(f(c) ≤ f(x) ≤ f(d)).

That is, there exists c and d in A such that

min
x∈A

f(x) = f(c) and max
x∈A

f(x) = f(d).

� In other words, there exists a point where the function f is maximized and where it is minimized.
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10.2 Optimization with the extreme value theorem

� What input maximizes f over [a, b]?

� It could be at a or at b. Or it could be in (a, b).

� If f has a continuous derivative, then anywhere f ′(x) > 0, f is strictly increasing, so it can’t be a max
or min when f ′(x) > 0.

� Anywhere f ′(x) < 0, f is strictly decreasing, can’t be a max or min when f ′(x) < 0.

� Max or min can only be at the endpoints of the interval or places where f ′(x) = 0.

Definition 50
For f : R→ R, a critical point is any place where f ′(x) = 0.

How to optimize continuous f over [a, b]

1: Find the critical points

2: Evaluate f at the critical points, and at the boundary of the interval at a and at b

3: The smallest function value must be the maximum of the function

4: The largest function value must be the minimum.

Qotd

� Find the critical points:

[x exp(−x)]′ = [x]′ exp(−x) + x[exp(−x)]′ = exp(−x)− x exp(−x)

= (1− x) exp(−x).

� Recall, if rs = 0, either r = 0 or s = 0. So if (1 − x) exp(−x) = 0, either 1 − x = 0 or exp(−x) = 0.
Can’t have exp(−x) = 0, so only critical point is at x = 1.

� Make a table:

x f(x)

0 0
1 exp(−1) ≈ 0.3678 . . .
3 3 exp(−3) ≈ 0.1493 . . .

� Hence
max
x∈[0,3]

f(x) = 0.3678 . . .

� Not part of question, but also get:
arg max
x∈[0,3]

f(x) = 1

and
min
x∈[0,3]

f(x) = 0, arg min
x∈[0,3]

f(x) = 0
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10.3 Global and local optima

Definition 51
Say that M is a global maximum for f : A → R (write M = maxx∈A f(x)) if there exists c such that
f(c) = M , and for all a ∈ A, f(a) ≤ M . Say that m is a global minimum for f : A → R (write
m = minx∈A f(x)) if

(∃d)(∀a ∈ A)(f(a) ≥ f(d) = m)

� Global maxima are maxima where the function value is as large as any output.

� Local maxima are maxima where the function value is largest in a neighborhood of the input value.

Local max

Local min

Global min

Global max

-2 2

Definition 52
Say (x, y) is a local maximum if f(x) = y, and

(∃a, b : x ∈ (a, b))

(
max
d∈(a,b)

f(d) = f(x)

)
.

Definition 53
Say (x, y) is a local minimum if f(x) = y, and

(∃a, b : x ∈ (a, b))( min
d∈(a,b)

f(d) = f(x)).

� Global optima are also local optima

� To find local optima, just find points with f ′(x) = 0, and try to find a narrow enough [a, b] so that
f ′(x) is the global optima for that region.

Example

� Show that (1,−3) is a local minimum of x3 − 3x− 1.

� For f(x) = x3− 3x− 1, f ′(x) = 3x2− 3, so the critical points are at 3x2− 3 = 0, so x is either −1 or 1.

� So [0, 2] only contains the critical point at x = 1.

� f(0) = −1, f(1) = −3, f(2) = 1, so (1,−3) is a local minima.
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Using second derivatives

� Note that at a local minima, f ′(x) = 0, for a < x f ′(x) < 0, and for a > x, f ′(x) > 0. So f ′(x) is
increasing, which means f ′′(x) ≥ 0.

Fact 13
If f ′(x) = 0 and f ′′(x) > 0, then (x, f(x)) is a local minimum of the function f . If f ′(x) = 0 and f ′′(x) < 0,
then (x, f(x)) is a local maximum of the function f .

Example

� Show that (1,−3) is a local minimum of f(x) = x3 − 3x− 1

� f ′(x) = 3x2 − 3, f ′′(x) = 6x.

� f(1) = 1− 3− 1 = −3, f ′(1) = 3(−1)2 − 3 = 0, f ′′(1) = 6(1) = 6 > 0.

� So (1,−3) is a local minimum

Problems

10.1: Which of the following sets are bounded? (You do not have to prove your answer.)

(a) [4,∞)

(b) (−∞,∞)

(c) [0, 3)

10.2: Suppose f(x) = x3 − x.

(a) Find maxx∈[−1,2] f(x).

(b) Find arg maxx∈[−1,2] f(x).

(c) Find minx∈[−1,2] f(x).

(d) Find arg minx∈[−1,2] f(x).
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11 Optimizing functions in n dimensions

Question of the Day Find

max
A∈{(x,y):x2+y2≤1}

e−(x2+y2).

Today

� Optimization

� Global and local optima

� Critical points

� Closed, bounded sets

11.1 Optimization over closed, bounded sets

� Intuition: v is on the boundary of the set S if any small circle around v contains points both in the set
and out of the set.

Definition 54
Say that v is on the boundary of S if

(∀a > 0)(∃w : ‖w − v‖ ≤ a,w ∈ S)(∃w′ : ‖w′ − v‖ ≤ a,w /∈ S).

� Note Open sets (by definition) cannot contain their boundary points.

� Ex: boundary points of open interval (3, 4) is 3 and 4. [This is also the boundary of [3, 4] and (3, 4].]

� Ex: boundary points of {(x, y) : x2 + y2 ≤ 1} is the points {(x, y) : x2 + y2 = 1}.

� Note: boundary of {(x, y) : x2 + y2 < 1} same as boundary of {(x, y) : x2 + y2 ≤ 1}.

� Ex: (−∞,∞) = R has no boundary points!

Fact 14
A set is closed iff it contains all of its boundary points.

� Ex: [3, 4] is closed, while (3, 4] is not (in both cases {3, 4} are the boundary points.

� Ex: {(x, y) : x2 + y2 ≤ 1} is closed, but {(x, y) : x2 + y2 < 1} is not.

Definition 55
A set S ⊆ Rn is bounded if

(∃M)(∀s ∈ S)(‖s‖ ≤M).

A set that is not bounded is unbounded.

� Note: the words bounded and boundary sound alike, but have very different meanings. Do not confuse
the two!

� Ex: [3, 4] is bounded (M = 4,M = 5), {(x, y) : x2 + y2 ≤ 1} is bounded (M = 1).

� Ex: (−∞, 3) is not bounded (unbounded).

53



Definition 56
A set that is closed and bounded is called compact.

Extreme value theorem from before still holds with more general definition of compact in Rn.

� Suppose A is compact and f : A→ R is continuous.

� Then there exists c and d in A such that

min
x∈A

f(x) = f(c) and max
x∈A

f(x) = f(d)

� So to optimize f over a compact set A...

� Use same idea as in 1 dimension

1: Optimize over the boundary of A

2: Optimize over all points in A not in the boundary

3: Take the best value that results.

11.2 Finding critical points

Definition 57
A point in a set A that is not on the boundary of A is called an interior point.

Fact 15
The interior of A is always an open set.

Definition 58
Say that v is a critical point or stationary point of f if ∇f(v) = 0.

Why are critical points important

� Turns out, local optima (v, f(v)) always have v a critical point.

Reasoning behind the fact

� Remember our first order linear approximation of the function:

f(v + h) ≈ f(v) +∇f(v) · h

If ∇f(v) 6= (0, 0, . . . , 0), set h = α∇f(v) (where α > 0), so

∇f(v) · h = α∇f(v) · ∇f(v) = α ‖∇f(v)‖2 > 0.

Then f(v + h) ≈ f(v) + something positive, so f(v) cannot be the maximum value.

� Similarly, set α < 0 to show that f(v) not the minimum value.

� Ex: f(x, y) = exp(−(x2 + y2)):

∇f =
(
−2xe−(x2+y2),−2ye−(x2+y2)

)
.

� e−w 6= 0, so only critical point has (−2x,−2y) = (0, 0), so x = 0, y = 0. Unique critical point at (0, 0).
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Definition 59
Point v is a global maximum for f : A→ R if

(∀w)(f(w) ≤ f(v)).

Point v is a global minimum if (∀w)(f(w) ≥ f(v)).

Definition 60
Point v in an open set U is a local maximum if

(∃a)(∀w : ‖v − w‖ < a)(f(w) ≤ f(v)).

(It is a local minimum if last clause is f(w) ≥ f(v).)

� A local max is where all nearby points have either the same or smaller function value.

Theorem 3 (Critical point theorem for n dimensions)
If v is a local maximum or minimum for f : A→ B for f ∈ C1, and A open, then v is a critical point.

� Critical points work similar to how they do in one dimension.

� All local min/max are critical points

� Not all critical points are local min/max.

crit pt & local max

test crit pt & local min

test

only crit pt

Pf: Suppose v is a local maximum.
Let w 6= 0.
Since U is open, let t1 be a small enough value such that (∀t ≤ t1)(v + tw ∈ U).
Since v is a local maximum, let t2 be a small enough

value such that (∀t ≤ t2)(f(v + t2w) ≤ f(v).
Let g(t) = f(v + tw)
Then g(t) has a local maximum at t = 0.
Calc I result: that means g′(t) = 0.
The chain rule for curves:

g′(t) =
dg

dt
=
df(v + tw)

dt
= ∇f · w.

So ∇f · w for all w 6= 0.
The only way that can happen is if ∇f = 0.

Qotd

� For qotd, only critical point in the interior is (0, 0), f(0, 0) = 1.

� On the boundary, x2 + y2 = 1, so f(x, y) = exp(−1). Since exp(−1) < 1,

max
(x,y):x2+y2≤1

x2 + y2 = 1.
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Problems

11.1: Which of the following sets are bounded? (You do not have to prove your answer.)

(a) {(x, y) : x2 + 2y2 ≤ 4}
(b) {(x, y) : x2 ≥ y}
(c) {(x, y, z) : x2 + y2 + z2 = 1}

11.2: Suppose f(x, y) = exp(−x2 − 2y2). Let A = {(x, y) : x2 + y2 ≤ 4}.

(a) Find maxA f(x, y).

(b) Find arg maxA f(x, y).

(c) Find minA f(x, y).

(d) Find arg minA f(x, y).
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12 Optimization over noncompact regions

Question of the Day What is

max
(x,y)∈R2

exp(−(x2 + y2))?

Today

� Optimizing over noncompact regions

Optima do not always exist

� Extreme value theorem says that continuous functions guaranteed to have optima over compact set.

� When set not compact, could go either way.

� Ex: maxx∈[0,∞) x does not exist.

� Ex: maxx∈[0,∞) exp(−x) = exp(0) = 1 since exp(−x) is a decreasing function.

� Can these problem be approached systematically?

� Find maxx≥0 x exp(−x).

12.1 Optimization in 1-D

� Assume that an interval is closed but unbounded

� Then best way to optimize is to show that the function is decreasing or increasing, and optimize
accordingly.

Definition 61
A function f : R→ R is increasing

(∀a < b)(f(a) ≤ f(b)).

If (∀a < b)(f(a) < f(b)), then the function is strictly increasing A function is decreasing if (∀a <
b)(f(a) ≥ f(b)) and strictly decreasing if (∀a < b)(f(a) > f(b)).

Fact 16
If f ′(x) ≥ 0 for all x ∈ [a, b], then f(x) is increasing over [a, b]. (For f ′(x) > 0, f is strictly increasing.)
Similarly, if f ′(x) ≤ 0 for all x ∈ [a, b], then f(x) is decreasing over [a, b]. (For f ′(x) < 0, f is strictly
decreasing.)

� With increasing functions f , the minimum is when x is as small as possible.

Fact 17
For increasing or decreasing functions f :

1: If f(x) is increasing over [a,∞) then minx∈[a,∞) f(x) = f(a).

2: If f(x) is increasing over (−∞, b] then maxx∈(−∞,b] f(x) = f(b).

3: If f(x) is decreasing over [a,∞) then maxx∈[a,∞) f(x) = f(a).

4: If f(x) is decreasing over (−∞, b] then minx∈(−∞,b] f(x) = f(b).

� If f ′(x) is not ≥ or ≤ 0 over an unbounded region, break region apart.
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Fact 18
Suppose optx∈A f(x) = MA and optx∈B f(x) = MB . Then

optx∈A∪B f(x) = opt{MA,MB}.

Example:

� Find maxx∈[0,∞) x exp(−x).

� For f(x) = x exp(−x), f ′(x) = exp(−x)− x exp(−x) = exp(−x)(1− x).

� Since exp(−x) > 0 for all x, f(x) ≥ 0 for x ≤ 1, f(x) ≤ 0 for x ≥ 1. So

max
x∈[0,1]

f(x) = f(1) = exp(−1), max
x∈[1,∞)

f(x) = f(1) = exp(−1),

which means
max

x∈[0,∞)
f(x) = max

x∈[0,1]∪[1,∞)
f(x) = max{exp(−1), exp(−1)}.

12.2 Using covers to optimize over unbounded regions in n dimensions

� Try to cover noncompact region by sets that are compact.

Definition 62
Let {A(a)} be a collection of sets such that A ⊆ ∪aA(a). Then say that {A(a)} is a cover of A.

Fact 19
Let {A(a)} be a collection of compact sets that cover Rn. Further, suppose

(∃v ∈ Rn)(∀a)( max
x∈A(a)

f(x) ≤ f(v)).

Then
max
w∈Rn

f(w) = f(v).

What is global max over R2?

� Let A(a) = {(x, y) : x2 + y2 ≤ a}.

� Then (0, 0) only critical point inside A(a). f(0, 0) = exp(−0) = 1

� On boundary, x2 + y2 = a so f(x, y) = exp(−a) ≤ 1.

� So maxx∈A(a) f(x) = 1 for all a.

� Hence maxx∈Rn f(x) = 1.

Problems

12.1: (a) What is maxx∈[0,∞) x
2 exp(−2x)?

(b) What is maxx∈(−∞,∞) 3− x2?

(c) What is minx∈(−∞,∞) |x|?
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13 Constrained Maximization

Question of the Day Maximize f(x, y) = x+ y subject to x2 + 2y2 ≤ 1.

Today

� Constraints given by implicit functions in C1

Constraints

� The economic problem: all resources are finite

� Ex: time, money, oil, unobtainium

� The mathematics problem: how to optimize the objective given constraints

Recall

� Recall explicit functions tell you how to calculate outputs from inputs. For f : Rn → Rm:

(y1, . . . , ym) = f(x1, . . . , xn)

� implicit functions are a set of points (x1, . . . , xn) such that f(x1, . . . , xn) = c for a fixed constant c.

� The boundary of sets is often given by an implicit function

A = {(x, y) : x2 + y2 ≥ 2}, ∂A = {(x, y) : x2 + y2 = 2}

(Here ∂A is another notation for the boundary of A.)

Examples

� Explicit: y = x2, Implicit: y−x2 = 0. In fact, every explicit function y = f(x) has an implicit function
description y − f(x) = 0.

� Implicit: x2 + y2 = 1. In this case, there is no explicit function description of this set of points.

So far

� For compact set: Optimum value either at boundary or interior.

� Qotd: Either {(x, y) : x2 + 2y2 < 1} or {(x, y) : x2 + 2y2 = 1}.

� For f ∈ C1, interior values where optima occur are critical points

∇f = (1, 1),

so no critical points in interior!

� So that leaves the boundary to consider:

max
x2+2y2=1

x+ y =?

� Note that the boundary points can be written as an implicit function.

59



13.1 Lagrange Multipliers

Recall that ∇f is direction of steepest ascent, that is, the direction to travel in such that f is increasing
most rapidly.

� But we cannot move freely in the contrained case, we are limited to moving on boundary. For the
question of the day, suppose we start at (1, 0) Then ∇(x, y) = (1, 1). Want to move in this direction,
but that would take us off of the ellipse.

steepest ascent

∇f · w > 0

� Recall
f(v + tw) ≈ f(v) + t(∇f · w)/ ‖w‖ = f(v) + tDw(f(v)).

As long as ∇f · w > 0, still can improve answer.

� Recall tangent line to curve g(x, y) = x2 + y2 = 1 at (x0, y0) is

∇g · (x, y) = ∇g · (x0, y0).

∇g is perpendicular/normal to the tangent line.

� If both ∇f and ∇g are perpendicular to tangent line, then they are pointing in the same direction!

∇f = λ∇g

for some constant λ.

Definition 63
If ∇f = λ∇g, call λ a Lagrange multiplier.

Definition 64
Say that vc is a critical point for optg(v)=0 f(v) if ∇f(vc) = λ∇g(vc) for a constant λ ∈ R.

� Critical point for maxx2+2y2=1 x+ y satisfy

(2x, 4y) = λ(1, 1).

Gives three equations (two from (2x, 4y) = λ(1, 1) and one from implicit function)

2x = λ, 4y = λ, x2 + 2y2 = 1.

� Don’t care about λ, so try to eliminate in equations

2x = λ = 4y ⇒ 2x = 4y ⇒ x = 2y.
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� Implicit equation then gives

(2y)2 + 2y2 = 1⇒ 5y2 = 1⇒ y = ±1/
√

5.

Two critical points: (2/
√

5, 1/
√

5), (−2/
√

5,−1/
√

5).

f(2/
√

5, 1/
√

5) ≈ 1.341, f(−2/
√

5,−1/
√

5) ≈ −1.341.

∇g

∇f

Theorem 4 (Optimization with a constraint)
If v is a local maximum or minimum for opt{f(v)|g(v) = 0}, where f, g ∈ C1, then v is a critical point
where ∇f = λ∇g for some constant λ 6= 0.

� So if constraint g is continuous, solve optv:g(v)=0 f(v) as follows:

– Find ∇g and ∇f
– Solve n+ 1 equations:

∇f = λ∇g︸ ︷︷ ︸
n equations

, g(v) = 0︸ ︷︷ ︸
1 equation

.

� Note that you can always write the constraint in the form g(v) = 0 because if g(v) = c just subtract c
from both sides of the equation.

� For example: constraint x2 + 2y2 = 1, g(x, y) = x2 + 2y2 − 1.

Problems

13.1: Solve the following optimzation problems.

(a) Find max{x+ y2|2x2 + y2 ≤ 2}.
(b) Find min{x+ y2|2x2 + y2 ≤ 2}.
(c) Find arg max{x+ y2|2x2 + y2 ≤ 2}.
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14 Constrained Maximization without continuous derivatives

Question of the Day Find
max

0≤x≤1,0≤y≤1
x2y.

Today

� Constraints where the boundary does not have a continuous derivative

Thinking about the question of the day...

max
(x,y)∈[0,1]×[0,1]

x2y.

The region over which we are maximizing is a square

No gradient on boundary at this point

� As usual, write A = int(A) ∪ ∂A.

int(A) = (0, 1)× (0, 1)

∂A = ({0} × [0, 1])︸ ︷︷ ︸
left

∪ ([0, 1]× {0})︸ ︷︷ ︸
bottom

∪ ({1} × [0, 1])︸ ︷︷ ︸
right

∪ ([0, 1]× {1})︸ ︷︷ ︸
right

.

Note {0} × [0, 1] = {(x, y) : x = 0, y ∈ [0, 1]}, so left side of square.

� Remember, if you can write A = A1 ∪A2 ∪ · · · ∪An, then

max
v∈A

f(v) = max{max
v∈A1

f(v), . . . , max
v∈An

f(v)}.

� Here
A1 = int(A), A2 = left, . . . , A5 = right

� Do each max problem separately. To find maxv∈int(A) f(x), look at critical points:

∇f(x, y) = (2xy, x2) = (0, 0).

Since x2 = 0⇒ x = 0, there are no critical points in int(A)!

� When x = 0, f(0, y) = 0. When x = 1, f(1, y) = y, so

max
y∈[0,1]

f(1, y) = max
y∈[0,1]

y = 1.

� Similarly, when y = 0, f(x, 0) = 0. When y = 1, f(x, 1) = x2, so

max
x∈[0,1]

f(x, 1) = max
x∈[0,1]

x2 = 1.

� Put all the pieces together to get:

max
(x,y)∈A

f(x) = max{0, 0, 1, 1} = 1
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Example On a budget of $90 million, a company buys model A1000 at $3 mil/unit, model B1000 at $5
mil/unit. If the company buys x units of the A1000’s and y units of the B1000’s, then utility (reward) is xy.
Find x and y to maximize the utility.

� Solution: first pretend can buy fractional numbers of units.

� To write the constraint, consider everything in terms of millions of dollars.

� Three constraints: 3x+ 5y ≤ 90, x ≥ 0, y ≥ 0, since we can’t buy negative amounts of the units.

� Want to know
arg max

3x+5y≤90,x≥0,y≥0
xy.

� ∇f = (y, x) = (0, 0)⇒ (x, y) = (0, 0), so no critical points in interior.

� x = 0 or y = 0 gives f = 0, so don’t have to worry about this part of boundary.

� Remaining part 3x + 5y = 90. g(x, y) = 3x + 5y − 90 = 0. ∇g = (3, 5). Lagrange multipliers gives 3
equations:

y = 3λ

x = 5λ

3x+ 5y = 90

� Solving λ = y/3 = x/5⇒ y = (3/5)x, 3x+ 3x = 90⇒ x = 15⇒ y = 9.

� Since x and y are both integers, must be best choice.

Problems

14.1: Graph {(x, y) : x3 − y2 = 0, x ∈ [−1, 1]}

14.2: (a) Find max{x2 + y|x3 − y2 = 0, x ∈ [−1, 1]}
(b) Find arg max{x2 + y|x3 − y2 = 0, x ∈ [−1, 1]}
(c) Find min{x2 + y|x3 − y2 = 0, x ∈ [−1, 1]}
(d) Find arg min{x2 + y|x3 − y2 = 0, x ∈ [−1, 1]}

14.3: (a) Find maxx2−1≤y≤1−x2 x2 − 3y2

(b) Find minx2−1≤y≤1−x2 x2 − 3y2
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15 Matrices and linear transformations

Question of the Day Suppose f is the map (x, y) 7→ (3x − y, 2y, x + y) and g is the map
(x, y, z) 7→ (x− y, x+ z). What is [g ◦ f ](x, y) = g(f(x, y))?

Today

� Linear tranformations

� Matrices

� Matrix multiplication

Recall

� f : Rn → Rm is a linear operator or linear transformation if

(∀v, w ∈ Rn)(∀α, β ∈ R)(f(αv + βw) = αf(v) + βf(w))

� Claim: f(x, y) = (3x− y, 2y, x+ y) is a linear operator.

Proof. Let v = (x1, y1), w = (x2, y2) ∈ R2, let α ∈ R. Then

f(αv + βw) = f(α(x1, y1) + β(x2, y2))

= f(αx1 + βx2, αy1 + βy2)

= (3(αx1 + βx2)− (αy1 + βy2), αx1 + βx2 + αy1 + βy2)

= α(3x1 − y1, x1 + y1) + β(3x2 − y2, x2 + y2)

= αf(x1, y1) + βf(x2, y2).

General linear operators

� Why does this work? 3x− y and x+ y work because x and y are being raised to the first power. Can
check: 3xy would not give a linear operator.

� Names of variables don’t matter: f(a, b) = (3a− b, a+ b) is same transformation.

� Therefore all that matters is the coefficients in front of the variables (3,−1) for 3x− y, and (1, 1) for
x+ y.

� When listed as rows of a table, these form a matrix.

Definition 65
A matrix is a table of entries. An n by m (also written n ×m) size matrix has n rows and m columns.
The i, jth entry of the matrix is the entry in the ith row and jth column.

Examples These are all matrices:

(
3 −1
1 1

)
,

x y
y z
z x

 ,

[
1 0 −1
4 2 0

]
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Using matrices to represent linear transformations

� Note that 3x− y = (3,−1) · (x, y).

Definition 66
Let v ∈ Rn be a vector. Say that v is a column vector if it is written as a matrix with n rows and 1
column, and a row vector if it is written with 1 row and n columns.

Examples

� These are column vectors:  1
0
−1

 ,

(
x
y

)
,
(
4
)

� These are row vectors (
1 0 −1

)
,
(
x y

)
,
(
4
)

15.1 Multiplying matrices by vectors

� Linear transformations represented by a new form of “multiplication”

� Recall f(x, y, z) = 3x+ 2y − z can be represented by matrix

A =
(
3 2 −1

)
� For v =

xy
z

, want Av = f(v). So

(
3 2 −1

)xy
z

 := 3x+ 2y − z.

Definition 67

A row matrix A =
(
a1 a2 · · · an

)
times a column matrix v =


b1
b2
...
bn

 is defined to be the same as the

dot product:
Av = a1b1 + · · ·+ anbn

� Only defined for 1× n times n× 1 matrix so far.

Fact 20
Any f : Rn → R that is a linear operator is of the form f(v) = Av for some 1× n matrix A.

� What if f : Rn → Rm? Ex:

f(x, y, z) =

(
3x+ 2y − z
x− y + z

)
� Each row gives one row of the matrix A:

f(v) = Av =

(
3 2 −1
1 −1 1

)xy
z

 .
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Definition 68
Let A be an m× n matrix and v a column vector with n entries. Then if A has rows r1, r2, . . . , rm, then

Av =


r1 · v
r2 · v

...
rm · v

 .

Fact 21
Any f : Rn → Rm that is a linear operator is of the form f(v) = Av for some m× n matrix A.

We will not give the proof of this important fact here, it is typically given in a course in linear algebra.

15.2 Multiplying matrices by matrices

� Now suppose f : Rm → Rn, and g : Rn → Rs. Then g ◦ f : Rm → Rs.

� Recall [g ◦ f ](v) = g(f(v)).

Fact 22
Suppose f : Rn → Rm and g : Rm → Rs are linear operators. Then so is g ◦ f .

Proof. Let v, w ∈ Rn and α, β ∈ R. Then

[g ◦ f ](αv + βw) = g(f(αv + βw))

= g(αf(v) + βf(w))

= αg(f(v)) + βg(f(w))

= α[g ◦ f ](v) + β[g ◦ f ](w).

� That means if f(v) = Av where A is m × n, and g(w) = Bw where B is s ×m, then g(f(v)) = Cv
where C is an s× n matrix.

Definition 69
If f(v) = Av where A is m × n and g(w) = Bw where B is s × m, then C = BA is defined to be the
matrix such that g(f(v)) = Cv.

Fact 23
For B an s×m matrix and A an m×n matrix, the matrix C = BA is a matrix whose i, jth entry is ri · cj ,
where ri is the ith row of matrix B, and cj is the jth column of matrix A.

Qotd: First write f and g using matrices, then multiply the matrices together.(
1 −1 0
1 0 1

)3 −1
0 2
1 1

 =

(
(1,−1, 0) · (3, 0, 1) (1,−1, 0) · (−1, 2, 1)
(1, 0, 1) · (3, 0, 1) (1, 0, 1) · (−1, 2, 1)

)

=

(
3 −3
4 0

)
So that means

g(f(x, y)) = (3x− 3y, 4x).

[Can check that is true directly as well.]
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Notes

� In general for two functions g and f the order of composition matters. That is, g(f(v)) 6= f(g(v)).
In the same way, for two matrices AB 6= BA in general. (If A or B is not square, then one direction
won’t even be defined!)

� The dimension of the output of the first transforation has to equal the dimension of the input of the
second transformation. For matrices, that means that in order to multiply them, the inner dimensions
must match:

(3× 4)(4× 7) = (3× 7)

(x× y)(y × z) = (x× z)
(5× 4)(5× 4) = undefined

Problems

15.1: Multiply the following row vectors times column vectors:

(a)
(
3 2

)(−1
1

)
.

(b)
(
3 2

)(x
y

)
.

15.2: Calculate the following products of matrices.

(a)

(
2 4
−1 −1

)(
0 1
1 0

)

(b)

(
1 −2 3
2 2 4

)1 0 1
0 1 0
1 0 1


15.3: What is

(
1/2 1/2
1/3 2/3

)2

?
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16 Higher Derivatives

Question of the Day Find the best quadratic approximation to the function f(x, y) = x3y at
(1, 1).

Today

� 2nd derivative of a real-valued function: Hessian

16.1 Second order approximations

Taylor series

� First degree Taylor polynomial (linear approx):

f1(x0 + h) = f(x0) + hf ′(x0)

� Second degree Taylor polynomial (quadratic approx)

f2(x0 + h) = f(x0) + hf ′(x0) + (1/2!)h2f ′′(x0)

Want to extend this to higher dimensions. We need to add up all the changes to the function value
coming from the first dimension, and the second dimension.

For f : Rn → Rm:

f2(v0 + h) = f(v0) +

n∑
i=1

∂f

∂xi
h(i) +

1

2

n∑
i=1

n∑
j=1

∂2f

∂xi∂xj
h(i)h(j)

= f(v0) +

n∑
i=1

Dif(v0)h(i) +
1

2

n∑
i=1

n∑
j=1

DiDjf(v0)h(i)h(j)

16.2 Writing in terms of ∇
That double sum is pretty unwieldy. So now let’s look at how we can write this using the ∇ notation. First
we need the transpose of a matrix.

Definition 70
For an m by n matrix A, the transpose of A, written AT is the matrix whose (i, j)th entry is the (j, i)th
entry of A.

Example:  0 1
2 3
−1 0

T

=

(
0 2 −1
1 3 0

)
.

The transpose turns columns into rows and rows into columns.
Now, typically we think of ∇ as a row vector of operations:

∇ =

(
∂

∂x1
, . . . ,

∂

∂xn
.

)
So ∇T is the corresponding column vector of operations.

Recall a row vector times a column vector is just dot product:

(
x1 x2 x3

)y1

y2

y3

 = x1y1 + x2y2 + x3y3.
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A column times a row however, gives a square matrix filled with products:x1

x2

x3

(y1 y2 y3

)
=

x1y1 x1y2 x1y3

x2y1 x2y2 x2y3

x3y1 x3y2 x3y3

 .

So for n = 3,

∇T∇ =


∂2

∂x2
1

∂2

∂x1x2

∂2

∂x1x3

∂2

∂x2x1

∂2

∂x2
2

∂2

∂x2x3

∂2

∂x3x1

∂2

∂x3x2

∂2

∂x2
3

 .

This is the second derivative operator for f : Rn → Rn.

Definition 71
The Hessian of f : Rn → R in C2 is the n by n matrix:

Hf = ∇T∇f =


∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xn

...
...

...
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2

n


Can use a square matrix to get double sums of the form that we need for the second order approxima-

tion.

Fact 24
Let A be an n by n matrix, and v a column vector in Rn. Then

vTAv =

n∑
i=1

n∑
j=1

v(i)A(i, j)v(j).

Definition 72
For a function f : Rn → Rn in C2, the second order Taylor approximation is

f2(v0 + h) = f(v0) +∇f(v0)h+ (1/2)hTHf(v0)h

which can also be written as

f2(v) = f(v0) +∇f(v0)(v − v0) + (1/2)(v − v0)THf(v0)(v − v0).

Qotd

� Here f(x, y) = x3y:
∂f

∂x
= 3x2y,

∂f

∂y
= x3,

So

Hf(x, y) =

(
6xy 3x2

3x2 0

)
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Let v = (1, 1), v + tw = (x, y), tw = (x− 1, y − 1). Then

∇f(1, 1) = (3(1)2(1), (1)3) = (3, 1)

Hf(1, 1) =

(
6 3
3 0

)
f2(x, y) = f(1, 1) + (3, 1) · (x− 1, y − 1) + (1/2)(x− 1, y − 1)

(
6 3
3 0

)(
x− 1
y − 1

)
= 1 + 3(x− 1) + (y − 1) + (1/2)(x− 1, y − 1)

(
6x+ 3y − 9

3x− 3

)
= 3x+ y − 3 + (1/2)[(x− 1)(6x+ 3y − 9) + (y − 1)(3x− 3)]

= 3x+ y − 3 + (1/2)[6x2 + 3xy − 9x− 6x− 3y + 9 + 3xy − 3y − 3x+ 3]

= 3x2 + 3xy − 6x− 2y + 3

� Final result is quadratic in x and y: only contains terms of degree 2, 1, or 0.

� Let’s check answer. f2 should match first two derivatives of f at (1, 1).

∇f2|(1,1) = (6x+ 3y − 6, 3x− 2)(1,1) = (3, 1)

Hf2(x, y) =

(
6 3
3 0

)
� Note that because f2 is a quadratic form, Hf2 is constant

Recall: for f(x) = ax2 + bx+ c, f ′′(x) = 2a is constant

Testing the approximation for qotd

� Consider f(1.01, 0.98) = 1.00969498. This has linear approximation of f(1.01, 0.98) ≈ 1 + 3(0.01) +
1(−0.02) = 1.01

� Quadratic approximation: f(1.01, 0.98) ≈ 1 + 3(0.01) + 1(−0.02) + (1/2)(6(0.01)2 + 6(0.01)(−0.02) +
0(−0.02)2) = 1.00939498.

Problems

16.1: Let f(x, y) = sin(x+ 2y). Find the Hessian of f .

16.2: Continuing the last problem, find the second order Taylor approximation to f around the point (π/2, 0).

16.3: Suppose f(x, y) = cos(x+ 2y).

(a) Find the gradient of f .

(b) Find the Hessian of f .

(c) What is f2(x, y), the second order approximation to f at (x, y) = (0, 0)?

(d) In what direction should one move from (τ/4, τ/4) in order to increase the value of f as quickly
as possible?

70



17 Hessians and Maxima/Minima

Question of the Day Find all critical pts of

f(x, y) = e−(x2+y2),

and determine if they are local maxima, local minima, or saddle points.

Today

� Using the second derivative to find local optima

Recall

� For f ∈ C2, f has the following second order approximation:

f2(x0 + h) = f(x0) + f ′(x0)h+ (1/2)hf ′′(x0)h

f2(x) = f(x0) + f ′(x0)(x− x0) + (1/2)(x− x0)f ′′(x0)(x− x0).

[Note h = x− x0 so x0 + h = x here.]

� If x0 is a critical point, f ′(x0) = 0, so

f2(x0 + h) = f(x0) + (1/2)h2f ′′(x0).

� For h 6= 0 (either positive or negative), h2 > 0.

f2(x0 + h) > f(x0)⇔ f ′′(x0) > 0

f2(x0 + h) < f(x0)⇔ f ′′(x0) < 0

Fact 25
Let f : R → R have f ∈ C2. Then if f ′(x0) = 0 and f ′′(x0) > 0, then (x0, f(x0)) is a local minimum. If
f ′(x0) = 0 and f ′′(x0) < 0, then (x0, f(x0)) is a local maximum.

� Note, if f ′(x0) = 0 and f ′′(x0) = 0 could be local maximum, minimum, or neither!

f(x) = x4 (local min), f(x) = −x4 (local max), f(x) = x3 (neither).

17.1 Positive and Negative Definite matrices

Higher dimensions

� Multivariate 2nd order (quadratic) approximation

f(v0 + h) = f(v0) +∇f(v0) · h+ (1/2)hTHf(v0)h.

� If v0 is a critical point then ∇f(v0) is zero vector.

f2(v0 + h) = f(v0) + (1/2)hTHf(v0)h.

� To find if (v0, f(v0)) is a local min or max, need to know, is hTHf(v)h positive or negative?
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Definition 73
Let A be a symmetric n by n matrix.

� (∀w 6= 0)(wTAw > 0), call A positive definite

� (∀w 6= 0)(wTAw < 0), call A negative definite

� (∀w 6= 0)(wTAw ≥ 0), call A nonnegative definite

� (∀w 6= 0)(wTAw ≤ 0), call A nonpositive definite

Fact 26
Let v be a critical point. If Hf(v) is positive definite, then v is a local minima. If Hf(v) is negative
definite, then v is a local maxima.

Definition 74
Let v be a critical point for f ∈ C2. Then if v is neither a local maximum nor a local minimum, then call
v a saddle point.

Fact 27
A is negative definite iff −A is positive definite

Because of this, we only need a test to determine if a matrix is positive definite. If you take a linear
algebra course, you will learn more general tests, but for this course we will just do the 2× 2 case.

17.2 Determining if a 2× 2 matrix is positive definite

� Now consider how we can tell if a 2× 2 matrix is positive definite. First consider the general case:

(
h1 h2

)(a b
b c

)(
h1

h2

)
=
(
h1 h2

)(ah1 + bh2

bh1 + ch2

)
= ah2

1 + 2bh1h2 + ch2
2

� The expression ah2
1 + 2bh1h2 + ch2

2 is called a quadratic form.

� Dividing through by h2
2 does not change the sign:

a(h1/h2)2 + 2b(h1/h2) + c = aw2 + 2bw + c, w = h1/h2.

� Can tell if aw2 + bw + c is always positive, always negative, or sometimes positive and sometimes
negative by determining if a and the discriminant of the equation are positive or negative.

Fact 28
The quadratic equation aw2 + bw + c is always positive when a > 0 and b2 − 4ac < 0, always negative
when a < 0 and b2 − 4ac < 0, and can be zero when b2 − 4ac ≥ 0.

From the earlier discussion this gives:

Fact 29

A matrix

(
a b
b c

)
is positive definite if a > 0 and b2 − ac < 0, and is negative definite if a < 0 and

b2 − ac < 0.

Later on we will set the determinant of the 2× 2 matrix

(
a b
b c

)
to be ac− b2. Using this terminology:

72



Fact 30

A matrix

(
a b
b c

)
is positive definite if a > 0 and it has positive determinant.

Fact 31
If a 2× 2 Hessian matrix has b2 − ac > 0 at a critical point, then it is a saddle point.

QotD

� f(x, y) = exp(−(x2 + y)2), so

∂f

∂x
= −2x exp(−(x2 + y2)),

∂f

∂y
= −2y exp(−(x2 + y2)).

Since exp(−(x2 + y2)) > 0 for all x and y, ∇f(x, y) = (0, 0)⇒ (x, y) = (0, 0).

� To get Hessian, need second partials:

∂2f

∂x2
= [−2 + 4x2] exp(−(x2 + y2))

∂2f

∂y∂x
= 4xy exp(−(x2 + y2))

∂2f

∂x∂y
= 4xy exp(−(x2 + y2))

∂2f

∂y2
= [−2 + 4y2] exp(−(x2 + y2))

So Hf(0, 0) is

Hf(0, 0) =

(
−2 0
0 −2

)
Here

a = −2 < 0, b2 − 4ac = 0− (4)(−2)(−2) = −16 < 0,

so Hessian is negative definite, and (0, 0) is a local max .

Monkey saddle

� A monkey saddle has three downward directions, and three upward, so a monkey can straddle it with
both legs and a tail.

� An example is f(x, y) = x(x2 − 3y2).

Figure 2: Taken from mathworld.wolfram.com/MonkeySaddle.html on 14 Sept, 2015.
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�
∇f = (2x2 − 3y2,−6xy),

So the only critical point has −6xy = 0. If x = 0, −3y2 = 0 ⇒ y = 0, and if y = 0, then 2x2 = 0 ⇒
x = 0, so either way (0, 0) is the only critical point.

� The Hessian is:

Hf(x, y) =

(
4x −6y
−6y −6x

)
, Hf(0, 0) =

(
0 0
0 0

)
� Our facts don’t tell us if local max, local min, or saddle point!

� Suppose x = y. Then f(x, x) = x(x2− 3x2) = −2x3. This is positive for x < 0 and negative for x > 0,
so x cannot be either a local maximum or local minimum.

Problems

17.1: Are the following matrices positive definite, negative definite, or neither?

(a)

(
1 0
0 1

)
(b)

(
−1 0
0 −1

)
(c)

(
3 2
2 2

)
(d)

(
3 3
3 2

)
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18 Integrals of functions of more than one variable

Question of the Day Find ∫
(x,y)∈[0,1]×[2,3]

x2 + y2 dR2.

Today

� Iterated integrals

� Integrals over two dimensional regions

The question of the day is an example of an integral over a two dimensional space, in this case R2. In
order to solve this, we would like to turn the problem into a sequence of integrals over one dimensional space.
That is, we would like it if:∫

(x,y)∈[0,1]×[2,3]

x2 + y2 dR2 =

∫
x∈[0,1]

[∫
y∈[2,3]

x2 + y2 dy

]
dx.

We can do the interior integral with respect to y, treating x as a constant (similar to when we did partial
derivatives): ∫

y∈[0,1]

x2 + y2 dy = x2y + y3/3|32

= 3x2 + 33/3− (2x2 + 23/3)

= x2 + 19/3

Then we can do the outer integral:∫
(x,y)∈[0,1]×[2,3]

x2 + y2 dR2 =

∫
x∈[0,1]

x2 + 19/3 dx

= x3/3 + (19/3)x|10
= 1/3 + 19/3

= 20/3 ≈ 6.666

When we write an integral as a sequence of nested one dimensional integrals, we call it iterated integrals.
So when can we turn a single integral into iterated integrals? There are two main theorems that tell us when
this is possible.

Theorem 5 (Fubini and Tonelli)
Suppose A ⊆ R2 and we wish to calculuate

I =

∫
(x,y)∈A

f(x, y) dR2.

Suppose one of the following conditions holds:

1: Tonelli: f(x, y) ≥ 0 for all (x, y) ∈ A.

2: Fubini:
∫

(x,y)∈A |f(x, y)| dR2 <∞.

Then

I =

∫
{x|(∃y)((x,y)∈A)}

[∫
{y|(x,y)∈A}

f(x, y) dy dx

]
=

∫
{y|(∃x)((x,y)∈A)}

[∫
{x|(x,y)∈A}

f(x, y) dx dy

]
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18.1 Fubini’s Theorem (bounded Version)

Now consider the problem of how we can verify the Fubini condition without going to the work of calcu-
lating the integral of |f | over A. Suppose that f is bounded over A. Then the integral of |f | over A is
finite.

Definition 75
Say that function f : A→ R is bounded if

(∃M)(∀v ∈ A)(|f(v)| ≤M).

Fact 32
For I =

∫
(x,y)∈A f(x, y) dR2, suppose

(∀(x, y) ∈ A)(|f(x, y)| ≤M).

Then I ≤M · area(M).

So if f is a bounded function, and area(M) is known to be finite, then we automatically know that Fubini
applies!

Lemma 1 (Compact Fubini)
Let [a, b] and [c, d] be closed, bounded intervals. If the function f is bounded over [a, b]× [c, d], then∫

(x,y)∈[a,b]×[c,d]

f(x, y) dR2 =

∫
x∈[a,b]

∫
y∈[c,d]

f(x, y) dy dx

=

∫
y∈[c,d]

∫
x∈[a,b]

f(x, y) dx dy.

Remember the extreme value theorem gives that if f is continuous, then such an M always exists, so
Fubini applies.

Fact 33
If f is continuous over [a, b]× [c, d], then (∃M)(∀v ∈ A)(|f(v)| ≤M).

18.2 Using the Tonelli condition

Unbounded regions

� Consider the following integral: ∫
(x,y)∈[0,∞)×[0,∞)

exp(−x− 2y) dR2.

� Cannot apply Fubini bounded version since domain unbounded.

� Can use Tonelli!

� Both Tonelli and Fubini apply to higher dimensional spaces, Rn, not just R2.

� In Rn, get iterated integral nested n layers deep.

Example Suppose that we want to find

I =

∫
(x,y)∈[0,∞)×[0,∞)

exp(−x− 2y) dR2.
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� First check nonnegativity: exp(−x− 2y) ≥ 0 for all (x, y) ∈ [0,∞)× [0,∞)

� Use Tonelli to break it into an iterated integral:

I =

∫
x∈[0,∞)

∫
y∈[0,∞)

exp(−x− 2y) dy dx.

� Working inside out, solve iterated integral:

I =

∫
x∈[0,∞)

exp(−x− 2y)

−2
|∞0 dx

=

∫
x∈[0,∞)

exp(−x)/2 dx

=

∫
x∈[0,∞)

exp(−x)/2 dx

= exp(−x)/(−2)|∞0
= 1/2 = 0.5000 .

Nonpositive functions The Tonelli condition was written for nonnegative functions, but can easily be
applied to nonpositive functions using the fact that integration is a linear operator:∫

A

f dA = −
∫
A

−f dA.

If f ≤ 0 then −f ≥ 0, so Tonelli can now be applied.

Problems

18.1: State whether or not Tonelli’s Theorem, compact Fubini’s Theorem, both, or neither apply to the
following integrals.

(a)
∫

(x,y)∈R2 x
2 + y2 dR2.

(b)
∫

(x,y)∈[0,2]×[−1,1]
x+ y dR2.

(c)
∫

(x,y)∈[0,2]×[−1,1]
x+ |y| dR2.

(d)
∫

(x,y)∈[0,∞)×[0,∞)
10− (x− 2)2 + y2 dR2.

18.2: Calculate the following integral:

I =

∫
(x,y)∈[0,π/3]×[0,2π/3]

sin(x+ 2y) dR2.
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19 More two-dimensional integrals

Question of the Day Let A be the triangle connecting (0, 0), (0, 1), and (1, 1). Find∫
(x,y)∈A

x− y dR2.

Today

� More integrals in higher dimensions.

� Working with shapes other than rectangles.

Recap

� Fubini applies when
∫
A
|f | dA is finite

� Tonelli applies when f ≤ 0 over A.

� Both allow turning n dimensional integral into n iterated integrals

Qotd Let A be the triangle connecting (0, 0), (0, 1) and (1, 1). Find∫
(x,y)∈A

x− y dA.

� Start by graphing the region.

(0, 0)

(0, 1) (1, 1)

� Here the limit region is compact, and x − y is continuous, so Fubini can be applied to say that the
two-dimensional integral can be found using an iterated integral process.

Example Let B be the triangle connecting (−1, 0), (0, 1) and (1, 0). Find∫
(x,y)∈B

x2y dB.

� First let’s graph the region:

(−1, 0) (1, 0)

(0, 1)
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� Because x2y is continuous and A is bounded, Fubini’s theorem applies and we can use an iterated
integral. Suppose we do x on the outside. Then the smallest x can be is −1, and the largest x can be
is 1. So our iterated integral will have the form:

I =

∫ 1

x=−1

∫
y∈???

x2y dy dx.

� Now let’s figure out the bounds on the y. For the triangle, there are three inequalities:

y ≥ 0

y ≤ x+ 1

y ≤ −x+ 1.

The y ≥ 0 gives the lower bound. For y ≤ x+1 and y ≤ −x+1, we can say that y = min{x+1,−x+1}.
So the iterated integral becomes:

I =

∫ 1

x=−1

∫ min{x+1,−x+1}

y=0

x2y dy dx.

� That minimum in the limit is going to cause us trouble. So let’s get rid of it. When x ∈ [−1, 0], then
min{x + 1,−x + 1} = x + 1. When x ∈ [0, 1], then min{x + 1,−x + 1} = −x + 1. So break up the
outer integral into these two pieces, so

I =

∫ 0

x=−1

∫ x+1

y=0

x2y dy dx+

∫ 1

x=0

∫ −x+1

y=0

x2y dy dx

=

∫ 0

x=−1

x2y2/2|x+1
0 dx+

∫ 1

x=0

x2y2/2|−x+1
0 dx

=

∫ 0

x=−1

x2(x+ 1)2/2 dx+

∫ 1

x=0

x2(−x+ 1)2/2 dx

=

∫ 0

x=−1

(1/2)(x4 + 2x3 + x2) dx+

∫ 1

x=0

(1/2)(x4 − 2x3 + x2) dx

= (1/2)[(1/5)x5 + (2/4)x4 + (1/3)(x3)]|0−1 + (1/2)[(1/5)x5 − (2/4)x4 + (1/3)(x3)]|10
= (1/2)[1/5− 1/2 + 1/3 + 1/5− 1/2 + 1/3] = 1/30 ≈ 0.03333 .

Qotd

� Goal, find I =
∫

(x,y)∈A x− y dR
2

� x− y is continuous, [0, 1]× [0, 1] compact, use Fubini:

I =

∫
(x,y)∈[0,1]×[0,1]

(x− y)1((x, y) ∈ A) dR2

=

∫
x∈[0,1]

∫
y∈[0,1]

(x− y)1((x, y) ∈ A) dy dx.

� Tricky part: use the indicator function to rewrite the limits of the inside part. Good idea to first draw
picture of region.

(0, 0)

(0, 1) (1, 1)
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� Now look at the equations describing the triangle. The three inequalities are:

x ≥ 0, y ≤ 1, y ≥ x.

� Construct limits from the inside out. So for
∫
x

∫
y

[stuff] dy dx, first do y, then x. Since the y triangle is

inside the x triangle, the limits of y can be functions of x. In this case, given the value of x, y ∈ [x, 1].
Then there are x values that run from 0 up to 1. Hence

I =

∫
x∈[0,1]

∫
y∈[0,1]

(x− y)1((x, y) ∈ A) dy dx

=

∫
x∈[0,1]

∫
y∈[x,1]

(x− y) dy dx.

� Now do the integrations:

I =

∫
x∈[0,1]

xy − y2/2|1y=x dx

=

∫
x∈[0,1]

(x− 1/2)− (x2 − x2/2) dx

=

∫
x∈[0,1]

x− 1/2− x2/2 dx

= x2/2− x/2− x3/6|10 = −1/6 ≈ -0.1666

19.1 When Fubini and Tonelli fail

� How can we handle positive and negative functions over unbounded limits?

� Fubini’s (bounded version) only bounded limits, Tonelli’s only nonnegative functions.

� Use more general Fubini’s Theorem.

Fact 34
Suppose

I+ =

∫
v∈A:f(v)≥0

f(v) dRn and I− =

∫
v∈A:f(v)≤0

−f(v) dRn

are both finite. Then

I =

∫
v∈A

f(v) dRn = I+ − I−

� Note that this also comes up in finding integrals of absolute values of functions:∫
v∈A
|f(v)| dRn = I+ + I−.

� Can always use Tonelli to find I+ and I− since the integrand is always nonnegative in region.

Example

� What is

I =

∫
x≥y

xy exp(−(x2 + y2)) dR2?

� Here exp(−(x2 + y2)) > 0, so break into places where xy > 0 and xy < 0, tackle separately with
Tonelli.
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xy > 0

xy > 0 xy < 0

I = I1 − I2 + I3

I1 =

∫ ∞
x=0

∫ x

y=0

f(x, y) dR2

I2 =

∫ ∞
x=0

∫ 0

y=−∞
−f(x, y) dR2

I3 =

∫ 0

x=−∞

∫ x

y=−∞
f(x, y) dR2

I = (1/8)− (1/4) + (1/8) = 0.

Problems

19.1: Let B be the region strictly inside the triangle connecting the points (0, 0), (1, 0), and (1, 1). Find∫
B

x−3/2 dR2

or show that it does not converge.

19.2: Find ∫
y≤x+2

xy

(1 + x2)(1 + y2)
dR2,

or show that it does not converge.
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20 Riemann integration in higher dimensions

Question of the Day What is the Riemann integral of f : Rn → R over A ⊂ Rn?

Today

� How the Riemann integral is formally defined in n dimensions.

20.1 Riemann length and area

Start with the length of an interval:

Definition 76
The Riemann length of an open interval (a, b) or a closed interval [a, b] is b− a.

Next we define the area of a rectangle.

Definition 77
The Riemann area of the open rectangle (a, b)× (c, d) or the closed rectangle [a, b]× [c, d] is (d− c)(b− a).

Definition 78
A region A is simple if it is a collection of a finite number of rectangles, so has the form

A = ∪ni=1Ai,

where each Ai is a rectangle of the form (ai, bi)× (ci, di) or [ai, bi]× [ci, di]. Let r(A) =
∑n
i=1 area(Ai) =∑n

i=1(di − ci)(bi − ai).

Definition 79
Suppose R = ∪Ri. Then R is disjoint if none of the Ri overlap, so so (∀i 6= j)(Ri ∩Rj = ∅).

The area of a disjoint simple set is just the sum of the area of the rectangles in the set.

Fact 35
If A is simple and disjoint, then area(A) = r(A).

To define areas for more complicated regions, begin with the idea that if A ⊆ B, where A is disjoint,
then area(A) = r(A) ≤ area(B). On the other hand if B ⊆ A, where A is simple, then area(B) ≤ r(A).

� So for every A ⊆ B where A simple and disjoint, r(A) is a lower bound for a possible value of area(A).

� And for every A where A simple and B ⊆ A, r(A) is an upper bound for a possible value of area(A).

� If there is exactly one number at least as big as all the lower bounds, and as small or smaller than all
the upper bounds, then that is the Riemann area.
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Riemann area ∈ [3, 15]

Definition 80
Suppose that B is a bounded region. Let S1 denote the set of simple disjoint regions in R2, and S2 denote
the set of simple regions. Suppose there is a single number s such that

(∀A ∈ S1 : A ⊆ B)(r(A) ≤ s),

and
(∀A ∈ S2 : B ⊆ A)(s ≤ r(A)).

Then the Riemann area of the region B is s.

Definition 81
For f a function over [a, b], let A = {(x, y) : x ∈ [a, b], 0 ≤ y ≤ f(x)}, and B = {(x, y) : x ∈ [a, b], f(x) ≤
y ≤ 0}. Then the Riemann integral of f from a to b is the Riemann area of A minus the Riemann area
of B if both these exist.

A

B
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20.2 Riemann hypervolume

Now expand the definitions to n dimensional space.

Definition 82
The Riemann hypervolume of [a1, b1]× · · · [an, bn] (or (a1, b1)× · · · × (an, bn)) is (b1− a1) · · · (bn− an).

Definition 83
A region in Rn is simple if it consists of the union of a finite number of boxes of the form [a1, b1]× · · · ×
[an, bn] or (a1, b1) × · · · × (an, bn). For such a region, let r(A) be the sum of the Riemann hypervolumes
of the boxes comprising the region.

Definition 84
Suppose that B is a bounded region. Let S1 denote the set of simple disjoint regions in Rn, and S2 denote
the set of simple regions. Suppose there is a value s such that

(∀A ∈ S1 : A ⊆ B)(r(A) ≤ s),

and
(∀A ∈ S2 : A ⊆ B)(s ≤ r(A)),

Then call s Riemann hypervolume of the region B.

The Riemann integral is then the hypervolume under the function where it is nonnegative minus the
hypervolume above the function where it is positive.

Definition 85
For f a function over bounded R ⊂ Rn, let

A = {(x1, . . . , xn, y) : (x1, . . . , xn) ∈ R, 0 ≤ y ≤ f(x1, . . . , xn)}, and

B = {(x1, . . . , xn, y) : (x1, . . . , xn) ∈ R, f(x1, . . . , xn) ≤ y ≤ 0}.

Then the Riemann integral of f over R is the Riemann area of A minus the Riemann area of B if both
these exist.

Problems

20.1: Find r(A) for the following examples:

(a) A = (0, 3)× (4, 8).

(b) A = ((0, 3)× (4, 8)) ∪ ((−1, 1)× (−2, 2)).

(c) A = (0, 3)× (4, 8)× (10, 12).

(d) A = [0, 3]× [4, 8]× [10, 12].
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21 Solving integrals with polar coordinates

Question of the Day What is
∫

(x,y):x2+y2≤1
e−(x2+y2) dR2?

Today

� Converting integrals between rectangular (Cartesian) and polar coordinates.

21.1 Polar coordinates

� Coordinate systems are different ways of recording points in space

� Rectangular use horizonal and vertical distance

� Polar coordinates use angle and distance from origin

(x, y)

r θ

� To convert back and forth, use trigonometry:

x = r cos(θ) r =
√
x2 + y2

y = r sin(θ) θ = arctan(y/x)

� Often, easier to describe rotationally symmetric regions using polar:

{(x, y) : x2 + y2 ≤ 1} = {r ≤ 1, θ ∈ [0, 2π]}

� Differentials for the two regions are different

dx

dy

Area = dx · dy

dθ

dr

Area 6= dr · dθ

� Note: the square doesn’t change area as you move towards and away from the origin:
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Area = r dr dθArea = dx dy

� Why is area of differential polar “crust” r dr dθ?

� Area of pizza of radius r: πr2.

� Area of slice of pizza: θr2/2.

� Area of differential crust:

(1/2)dθ(r + dr)2 − (1/2)dθr2 = (1/2)dθ(r + 2rdr + (dr)2)− (1/2)dθr2

= (1/2)dθ(2rdr + (dr)2)

= r dr dθ.

Fact 36
For polar coordinates,

dx dy = r dr dθ.

21.2 Limits, Integrand, Differential

� When changing from rectanglar to polar ((x, y) to (r, θ)) have to change

1: Limits: write limits in terms of (r, θ)

2: Integrand: put r and θ into x and y

3: Differential: Change dx dy to r dr dθ

Qotd

� Limits: ∫
(x,y):x2+y2≤1

exp(−(x2 + y2)) dx dy =

∫
r≤1

exp(−(x2 + y2)) dx dy

� Integrand:

I =

∫
r≤1

exp(−r2) dx dy

� Differential:

I =

∫
r≤1

exp(−r2)r dr dθ.

� Now use Tonelli (note r always nonnegative)
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�

I =

∫ 1

r=0

∫ 2π

θ=0

r exp(−r2) dr

= 2π

∫ 1

r=0

r exp(−r2) dr

= 2π exp(−r2)/(−2)|10
= 2π[−(1/2) exp(−1)− (−1/2) exp(0)]

= π(1− 1/e) ≈ 1.985

� This is a special case of a very general framework for moving from one set of coordinates to another.

� Much of what we do in the rest of the course will be changing integrals over differentials from one
coordinate system to another in order to make problems easier.

Problems

21.1: Find ∫
x2+y2≤9

1

(x2 + y2)1/4
dR2.
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22 Vector Fields

Question of the Day Find the integral of F (x, y) = (x2, x+y) over the parabola x = y2 between
(1,−1) and (1, 1).

Today

� Vector fields

Types of functions

� Curves (input real, output vector): C : R→ Rn

� Real Valued Function (input vector, output real): Rn → R

� Vector Fields (Input is vector, get back another vector)

F : Rn → Rm.

Examples

� Wind velocity at a position

� Change in economic indicators at a given point in dataspace.

� General form for F : Rn → Rm,

F (v) = (f1(v), f2(v), . . . , fm(v)),

where v ∈ Rn, and fi are all real-valued functions.

Definition 86
If each fi ∈ Cn, then F ∈ Cn.

� The QotD asks us to integrate a vector field over a curve

� Physics: needed to find work to move an object through a vector of forces

� Econ: needed to evaluate effort to move along path in indicator space.

� Recall: for a curve C,
dC = C ′(t) dt.

� The length of a curve uses ‖dC‖ = ‖C ′(t)‖ dt for dt > 0.

22.1 Definition of curve integrals

Definition 87
The path integral (also called curve integral) over the curve C for t ∈ [t0, t1] of the vector field F is∫

C

F =

∫
C

F · dC =

∫ t1

t=t0

F · C ′(t) dt =

∫ t1

t=t0

F (C(t)) · C ′(t) dt.

� In the Q of Day, ∫
C

(x2, x+ y) =

∫
C

(x2, x+ y) · dC,

for C the parabola x = y2 from (1,−1) to (1, 1).
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� Steps

1: Parameterize the curve. Turns out you can do this any way you want. For instance:

C1(t) = (t2, t), C2(t) = (t,
√
t), C3(t) = (e2t, et)

all work (all have x = y2). Use whichever makes integral easiest. Start with C1,

C ′(t) = (2t, 1).

Then t ∈ [−1, 1], since C1(−1) = (1,−1), C1(1) = (1, 1).

2: Next step: write F (x, y) in terms of t. With C1, x = t2, y = t,

F (C(t)) = F (t2, t) = (t4, t2 + t)

3: Solve the integral: ∫
C

F =

∫ 1

−1

(t4, t2 + t) · (2t, 1) dt

=

∫ 1

−1

2t5 + t2 + t dt =
2

6
t6 +

1

3
t3 +

1

2
t2|1−1

=
2

6
+

1

3
+

1

2
−
[

2

6
− 1

3
+

1

4

]
=

2

3
≈ 0.6666.

Intuition

� Suppose that at point (x, y), the wind is blowing with velocity F (x, y). Then
∫
C
F (x, y) dC is the

amount of energy you get from the wind to walk along curve C

� If wind is at your back, integral is positive

� If wind is blowing you backward, integral is negative (you have to add energy to walk the path.)

Example

� Find ∫
C

G, G(x, y) =

(
−y

x2 + y2
,

x

x2 + y2

)
,

where C travels one circuit counterclockwise around the circle of radius 3.

� “Wind” is moving counterclockwise: G(x, y) = (−y/r2, x/r2)
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� If you move counterclockwise around circle, wind pushes you, so curve integral is positive.

� First step solution: parameterize the curve:

(x, y) = (3 cos(θ), 3 sin(θ)),

Second step: write G in terms of parameter θ:

G(C(θ)) =

(
−3 sin(θ)

9 sin2(θ) + 9 cos2(θ)
,

3 cos(θ)

9 sin2(θ + 9 cos2(θ))

)
= (−(1/3) sin(θ), (1/3) cos(θ)).

Last step: solve the curve integral:∫
C

G =

∫ 2π

θ=0

(−(1/3) sin(θ), (1/3) cos(θ)) · (−3 sin(θ), 3 cos(θ)) dt

=

∫
θ∈[0,2π]

sin2(θ) + cos2(θ) dθ

= 2π.

� Note: Wind weaker as get farther out, but distance traveled is greater, so overall curve integral does
not depend on radius!

Two facts about 1-D integrals

1: ∫ b

a

f(x) dx = −
∫ a

b

f(x) dx.

2: For a < c < b: ∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx.
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Two facts about curve integrals

1: Let C− be the reverse curve of C:

C C−

∫
C

F = −
∫
C−

F.

2: Let C = C1 ∪ C2, then

C1

C2

∫
C

F =

∫
C1

F +

∫
C2

F.
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23 Curve integrals for potential functions

Question of the Day Let F (x, y, z) = (z3y, z3x, 3z2xy), and C is a curve from (0, 0, 0) to (1, 1, 1).
What is ∫

C

F (x, y, z) · dC?

Today

� Potential functions

� Generalized Fundamental Theorem of Calculus

Recall the FTC:

Theorem 6 (Fundamental Theorem of Calculus)
If f(x) ∈ C1, then ∫ b

x=a

f ′(x) dx = f(b)− f(a).

� The FTC says if f ′(x) ∈ C0, then only value of f at boundary of [a, b] matters. Boundary of [a, b] is
{a, b}.

� To use FTC, must find antiderivatives. For instance, adz(3z
2) = z3 + C for any constant C. Can use

C = 4 for instance: ∫ 1

z=0

3z2 dz = (z3 + 4)|10 = 7− 4 = 3.

Usually use C = 0 as that is the simplest antiderivative.

23.1 The Generalized Fundamental Theorem of Calculus

Theorem 7 (Generalized Fundamental Theorem of Calculus)
Suppose φ : Rn → R ∈ C1 and C is a curve parameterized as C([t0, t1]). Then∫

C

∇φ · dC = φ(C(t1))− φ(C(t0)).

Just as with FTC, for Gen FTC, inside of curve doesn’t affect integral, only first point of curve C(t0)
and last point of curve C(t1).

Using the gen FTC

� In general, GFTC harder to use than FTC.

� To use for ∫
C

(z3y, z3x, 3z2xy),

have to find φ such that
∂φ

∂x
= z3y,

∂φ

∂y
= z3x,

∂φ

∂z
= 3z2xy.
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Partial antiderivatives

� Remember, ∂A(y, z)/∂x = 0 for any function A of y and z. In 1-D

adx(3z2) = z3 + C.

In 3-D:
adx(3z2xy) = z3 + C(x, y).

Want to solve:
adx(z3y) = ady(z3x) = adZ(3z2xy)

Get three equations:
z3yx+A(y, z) = z3xy +B(x, z) = z3xy + C(x, y).

In this case, can make A(y, z) = B(x, z) = C(x, y) = 0 to make it work.

� ∫
C:(0,0,0) to (1,1,1)

∇(z3xy) = 13 · 1 · 1− 03 · 0 · 0 = 1 .

Note answer does not depend on how the curve gets from (0, 0, 0) to (1, 1, 1)!

23.2 Potential functions

Definition 88
Let F : Rn → Rn be a vector field. If F = ∇φ for some φ : Rn → R, call φ a potential function for F .

Harder example

� Find the potential function that gives rise to the vector field

F (x, y, z) = (2xyz + y cos(xy), x2z + z + x cos(xy), x2y + y).

� Any such vector field has to satisfy:

antiderx(2xyz + y cos(xy)) = antidery(x2z + z + x cos(xy)) = antiderz(x
2y + y),

so find A(y, z), B(x, z) and C(x, y) so that:

x2yz + sin(xy) +A(y, z) = x2yz + yz + sin(xy) +B(x, z) = x2yz + yz + C(x, y).

In this case, the x2yz cancels out, leaving

sin(xy) +A(y, z) = yz + sin(xy) +B(x, z) = yz + C(x, y).

Then C(x, y) = sin(xy) to complete its expression, and A(y, z) = yz to complete its expression, and
B(x, z) = 0. The final result is

φ(x, y, z) = x2yz + yz + sin(xy)

Closed curves

Definition 89
Say C = C([t0, t1]) is a closed curve if C(t0) = C(t1).

A closed curve ends where it started.

Fact 37
If F has a potential function φ and C is a closed curve, then

∫
C
F = 0.

Proof. ∫
C

F =

∫
C([t0,t1])

∇φ = φ(C(t1))− φ(C(t0)) = 0.
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How can we tell if F does not have a potential function?

� Recall that if F = ∇φ, then F = (F1, F2, . . . , Fn) where Fi = Diφ. So for all i 6= j

DjFi = DjDiφ = DiDjφ = DiFj .

If one of these equations fails to hold, then F cannot have a potential function.

� Example: does F (x, y, z) = (x+ y, 2xy, 3(x2 + z2)) have a potential function? No! The proof:

F2(x, y, z) = 2xy D1F2 = 2y

D2F1 = 1.

Since these two are not equal, no potential function can exist!

� Earlier example: F (x, y, z) = (z3y, z3x, 3z2xy).

D1F2 = z3 D2F1 = z3

D1F3 = 3yz2 D3F1 = 3yz2

D2F3 = 3xz2 D3F2 = 3xz2.

Fact 38
If F = ∇φ, then DiFj = DjFi for all i 6= j. The converse is not true: it is possible for DiFj = DjFi for
all i 6= j, but still have no potential function for F .

� There are other tests for if F has a potential function, but this is the only one that we’ll discuss in this
course.

23.3 Proof of the Generalized Theorem of Calculus

Proof. Let C be a curve from C(t0) to C(t1). Then∫
C

∇φ =

∫ t1

t=t0

∇φ(C(t)) · C ′(t) dt

=

∫ t1

t=t0

d

dt
φ(C(t)) dt [by the chain rule]

= φ(C(t1))− φ(C(t0)) [by the FTC].
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24 Changing curve integrals to integrals over area

Question of the Day Find
∫
C
y2 dx + x dy for C moving counterclockwise around a circle of

radius 2 centered at the origin.

Today

� Green’s Theorem

So far...

� Curve integrals tell how much energy comes from wind as you move around a path.

�
∫
C
y2 dx+ x dy says you get a little bit of energy y2 dx when you travel a small distance dx in the x

direction, and a little push of x dy when you travel a small distance dy in the y direction.

>

dx

dy

� Example: moving from (6, 1) to (6.1, 1.2) adds about

(6.1− 6) · 12 + (1.2− 1) · 6 ≈ 1.3

to the integral.

� Our clever plan:

1: Divide the region into little squares

dx

dy

−dx

dy

Give this curve integral around differential curve a name, for F (x, y) = (F1(x, y), F2(x, y)):∫
diff. curve

F (x, y) = I(x, y).

2: Put the squares next to each other. Note that the dy and −dy lines cancel each other out.

dx

dy

−dx

−dy

dx

dy

−dx

−dy
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3: Use enough squares to build back up to the original boundary/closed curve. [All lines inside
cancel each other out]

Then ∫
C

F =

∫
area inside C

I(x, y).

� So this idea converts a curve integral around C to a two dimensional integral over the area inside C.

24.1 Green’s Theorem

� To use this, need to know what I(x, y) is. Derive this using the linear approximations for F = (F1, F2):

a

b

c

d

a

b

c−

d−

I(x, y) =

∫
diff. curve

F (x, y)

=

∫
a

F +

∫
b

F +

∫
c

F +

∫
d

F

=

∫
a

F +

∫
b

F −
∫
c−
F −

∫
d−
F

Do a and c− first: ∫
a

F −
∫
c−
F = F1(x, y) dx− F1(x, y + dy) dx

= F1(x, y) dx− (F1(x, y) +
∂F1

∂y
dy) dx

= −∂F1

∂y
dx dy.

� Next do b and d−: ∫
b

F −
∫
d−
F = F2(x+ dx, y) dy − F1(x, y) dy

= (F2(x, y) +
∂F2

∂x
dx) dy − F2(x, y) dy

=
∂F2

∂x
dx dy.

� So

I(x, y) =

[
∂F2

∂x
− ∂F1

∂y

]
dx dy
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Definition 90
A curve has postive orientation if the area it encloses is on the left of the curve.

Theorem 8 (Green’s Theorem)
Let A ⊂ R2 have a differentiable closed curve C as its boundary. Then if C has positive orientation, for
p(x, y), q(x, y) ∈ C1, ∫

C

p dx+ q dy =

∫
A

(
∂q

∂x
− ∂p

∂y

)
dy dx.

Qotd

� Here p(x, y) = y2, q(x, y) = x.

� So ∫
C

y2 dx+ x dy =

∫
(x,y):x2+y2≤22

(1− 2y) dx dy

=

∫
r∈[0,2]

∫
θ∈[0,2π]

r(1− 2r sin(θ)) dθ dr

=

∫
r∈[0,2]

r[θ + 2r cos(θ)]|2π0 dr

=

∫
r∈[0,2]

2πr dr

= 2πr2/2|20
= 4π ≈ 12.56

Boundaries and integrals

� FTC: integral of f ′ over [a, b] only depends on f at boundary of [a, b]

� GFTC: integral of ∇φ over C([a, b]) only depends on φ at boundary points {C(a), C(b)}.

� Green’s Theorem: integral of ∂q/∂x− ∂p/∂y over A only depends on p and q at boundary of A.

� In general, have Stokes’ Theorem: ∫
∂Ω

ω =

∫
Ω

dω.

� The value of dω is called a differential form, and we will define and discuss it later in the course.
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25 Divergence and rotation

Question of the Day Let F (x, y) = (y,−x), and C be the unit circle oriented ccw. Then for n
the normal direction to the curve, show that∫

C

F · dn = 0.

Today

� Divergence of vector field

� Rotation of a vector field

Types of vector fields

� In an exploding vector field, the wind is blowing outwards from the origin

� In a collasping vector field, wind is blowing in towards the origin.
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� In rotating vector fields, objects pushed around in circles

� Divergence measures exploding/compressing, rotation measures how much spin in the vector field.

Definition 91
The divergence of a vector field F = (f1, . . . , fn) is

div(F ) = ∇ · F =
∂f1

∂x1
+ · · ·+ ∂fn

∂xn
.

Definition 92
The rotation of F = (p, q) is

rot(F ) =
∂q

∂x
− ∂p

∂y
.

� With this notation, Green’s theorem becomes:∫
C

F =

∫
inside C

rotF

� Rotation versus explosion:

dx

dy

−dx

−dy

Rotation Explosion

� For explosion, want F · n, where n is the normal vector to the direction of motion.

� Like with Green’s Theorem, summing over squares gives “explosion” past enclosing curve
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� So, letting � denote a little differential square, we have:∫
boundary A

F =

∫
A

∫
�
F =

∫
A

rot(A) dx dy [Green’s Theorem]∫
boundary A

F · n =

∫
A

∫
�
F · dn =

∫
A

div(A) dx dy [Divergence Theorem]∫
boundary [a,b]

F = F (b)− F (a) =

∫
A

f ′(x) dx [FTC].

� So what is div(F )? Consider integrating around a rectangle of width a1 and height a2. Then there are
four pieces:

Explosion

I = I1 + I2 + I3 + I4

I1 =

∫
(0,0) to (a1,0)

F (x, y) · (0,−1)

I2 =

∫
(a1,0) to (a1,a2)

F (x, y) · (1, 0)

I3 =

∫
(a1,a2) to (0,a2)

F (x, y) · (0, 1)

I4 =

∫
(0,a2) to (0,0)

F (x, y) · (−1, 0)

Using F (x, y) = (f1(x, y), f2(x, y)),

I1 =

∫ a1

x=0

−f2(x, 0) dx

I2 =

∫ a2

y=0

f1(a, y) dy

I3 =

∫ a1

x=0

f2(x, a) dx

I4 =

∫ a2

y=0

−f1(0, a) dy
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So combining I1 and I3 and I2 and I4 gives:

I1 + I3 =

∫ a1

x=0

[f2(x, a)− f2(x, 0)] dx

I2 + I4 =

∫ a2

y=0

[f2(a, y)− f2(0, y)] dy

So now picture a2 getting very small. Then

f2(x, a2) ≈ f2(x, 0) + a1
∂f2

∂y
(x, 0)

f2(x, a2)− f2(x, 0) ≈ a2
∂f2

∂y
(x, 0)

Then if a1 is also very small, then the integrand is almost a constant, so∫ a1

x=0

[f2(x, a)− f2(x, 0)] dx ≈ a1a2
∂f2

∂y
(0, 0).

Repeating this for y gives ∫ a2

y=0

[f1(a1, y)− f2(0, y)] dy ≈ a1a2
∂f1

∂x
(0, 0).

Then for a1 = dx and a2 = dy,

I = I1 + I2 + I3 + I4 =
∂f1

∂x
+
∂f2

∂y
dx dy.

So

div(F ) =
∂f1

∂x
+
∂f2

∂y
= ∇ · F.

Qotd

� For F = (y,−x),

div(F ) = ∇ · F =
∂f1

∂x
+
∂f2

∂y
= 0 + 0 = 0.

� Therefore
∫

boundary A
=
∫
A

div(F ) dx dy = 0.

25.1 The Divergence Theorem in 2D

If a curve is moving in direction dC = (dx, dy), then the differential direction dn = (dy,−dx) is perpendicular
to the curve. To see this, note

(dx, dy) · (dy,−dx) = dx dy − dy dx = 0.

Theorem 9 (Divergence Theorem in 2D)
Let F (x, y) = (f1(x, y), f2(x, y)), and A be a region with a closed curve as a boundary. Then∫

boundary A

F · dn =

∫
A

div(F ) dx dy =

∫
A

(
∂f1

∂x
+
∂f2

∂y

)
dx dy,

where the curve integral is taken to be counterclockwise.
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26 Areas and volumes through integrals

Question of the Day Find the volume of the tetrahedron with vertices at (0, 0, 0), (0, 0, 1),
(1, 0, 0), and (0, 1, 0).

Today

� Finding areas and volumes with integrals

Fact 39
The area of a region A ⊂ R2 is

∫
A

1 dR2 =
∫
R2 1((x, y) ∈ A) dR2. The volume of S ⊂ R3 is

∫
S

1 dR3 =∫
R3 1((x, y, z) ∈ S) dR3.

� Note that since 1(v) = 1 is a nonnegative function, can always use Tonelli to break integral into iterated
integral.

� The tricky part is writing the limits of the iterated integral.

� Remember to work inside out

Qotd ∫
S

1 dR3 =

∫
x∈R

∫
y∈R

∫
z∈R

1( (x, y, z) ∈ A︸ ︷︷ ︸
x≥0,y≥0,z≥0,x+y+z≤1

) dz dy dx

� Unwind the indicator function: given x and y, what are permissible values of z? z ≥ 0, and x+y+z ≤ 1,
so z ≤ 1− x− y. So∫

S

1 dR3 =

∫
x∈R

∫
y∈R

1(x ≥ 0, y ≥ 0, x+ y ≤ 1)

∫
z∈[0,1−x−y]

dz dy dx

� Now use the indicator to change the limits on y, then on x∫
S

1 dR3 =

∫
x∈R

1(x ≥ 0, x ≤ 1)

∫
y∈[0,1−x]

∫
z∈[0,1−x−y]

dz dy dx

=

∫
x∈[0,1]

∫
y∈[0,1−x]

∫
z∈[0,1−x−y]

dz dy dx

=

∫
x∈[0,1]

∫
y∈[0,1−x]

1− x− y dy dx

=

∫
x∈[0,1]

(1− x)y − y2/2|1−x0

=

∫
x∈[0,1]

(1/2)(1− x)2|1−x0

= (1/2)(1/3)(1− x)3/(−1)|10
= 1/6 ≈ 0.1666 .

26.1 Special cases of the area integral

Integrate a nonnegative function to get the area under the curve...

Fact 40
Let A = {(x, y) : x ∈ [a, b], y ∈ [0, f(x)]} for f(x) ≥ 0. Then the area of A is∫ b

x=a

f(x) dx.
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Proof. We know ∫
R2

1((x, y) ∈ A) dR2 =

∫
x∈R

∫
y∈R

1(x ∈ [a, b], y ∈ [0, f(x)]) dy dx

=

∫
x∈R

∫
(x ∈ [a, b])

∫ f(x)

y=0

dy dx

=

∫ b

x=a

f(x) dx.

Fact 41
Let A = {(x, y) : x ∈ [a, b], y is between f(x) and g(x)}. Then the area of A is∫ b

x=a

|f(x)− g(x)| dx.

Reminder |x| is x when x ≥ 0 and −x when x ≤ 0.

Example

� Find the area between the curves f(x) = x and g(x) = x2 for x from 0 to 2.

� Note f(x)−g(x) = x−x2 = x(1−x). So for x ∈ [0, 1], x ≥ 0 and (1−x) ≥ 0 so |f(x)−g(x)| = x(1−x).

� When x ∈ [1, 2], x ≥ 0 but (1− x) ≤ 0, so |f(x)− g(x)| = −(f(x)− g(x)) = −x(1− x). Therefore

area(A) =

∫ 1

x=0

x(1− x) dx+

∫ 2

x=1

−x(1− x) dx

= 1

Proof. Let A1 = {(x, y) : x ∈ [a, b] and y ∈ [f(x), g(x)]} and A2 = {(x, y) : x ∈ [a, b] and y ∈ [g(x), f(x)]}.
Then ∫

(x,y)∈A
1 dR2 = 1(x,y)∈A1

1 dR2 + 1(x,y)∈A2
1 dR2.
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Note that ∫
(x,y)∈A1

1dR2 =

∫
x∈R

1y∈R1(x ∈ [a, b], y ∈ [f(x), g(x)]) dydx

=

∫
x∈R

1(x ∈ [a, b], f(x) ≤ g(x))1
g(x)
y=f(x) dy dx

=

∫
x∈[a,b],f(x)≤g(x)

g(x)− f(x) dx.

Similarly, ∫
(x,y)∈A2

=

∫
x∈[a,b],g(x)≤f(x)

f(x)− g(x) dx.

Putting these together gives ∫
(x,y)∈A

=

∫ b

x=a

|g(x)− f(x)| dx.

26.2 Special cases of the volume integral

Integrate cross-sectional area to get volume...

Fact 42
Let S ⊂ R3 be compact with min{z : (x, y, z) ∈ S} = a and max{z : (x, y, z) ∈ S}. Then

volume(S) =

∫ b

z=a

area({(x, y) : (x, y, z) ∈ S})

[Note that the area of (x, y) such that (x, y, z) ∈ S is the cross-sectional area of the solid.

Proof. The volume of S is∫
R3

1((x, y, z) ∈ S) dR3 =

∫
z∈R

∫
y∈R

∫
x∈R

1((x, y, z) ∈ S) dx dy dz

=

∫
z∈[a,b]

∫
(x,y):(x,y,z)∈S

1 dR2 dz

=

∫
z∈[a,b]

area({(x, y) : (x, y, z) ∈ S}) dz.

26.3 n-dimensional hypervolume

Fact 43
The set A ⊂ Rn has Riemann length (n = 1), area (n = 2), volume (n = 3), or hypervolume
(n > 3) of ∫

A

1 dRn =

∫
Rn

1(v ∈ A) dRn

when the Riemann integral exists.
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27 Changing variables

Question of the Day Find the volume of the region above the cone z ≥
√
x2 + y2 and inside

the unit sphere x2 + y2 + z2 ≤ 1.

Today

� Transforming coordinate systems

Why different coordinate systems?

� Recall polar coordinate transformation:

x = r cos(θ), y = r sin(θ), r =
√
x2 + y2, θ = arctan(y/x).

� Differential polar coordinate transformation went along with it:

dx dy = r dr dθ.

� Easier to write regions such as circles in polar coordinates:

{(x, y) : x2 + y2 ≤ 3} = {(r, θ) : r ≤
√

3, θ ∈ [0, 2π]}.

� In three dimensions, use spherical coordinates or cylindrical coordinates.

27.1 Spherical coordinates

� Represent a point (x, y, z) by

ρ = distance from origin

θ = angle in the x-y plane

φ = angle from z-axis

x

y

z

ρ

(x, y, z)

φ

θ

� Dist. (0, 0, 0) to (0, 0, z) is ρ cos(φ)
Dist. from (0, 0, 0) to (x, y, 0) is ρ sin(φ).

Put these together to give
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Definition 93
Spherical coordinates for a point in R3 is a 3-tuple (ρ, θ, φ), where

z = ρ cos(φ)

x = ρ sin(φ) cos(θ)

y = ρ sin(φ) sin(θ)

Just like with polar cooridnates, this has a differential transformation as well.

Fact 44
For the spherical coordinate transformation:

dx dy dz = ρ2 sin(φ) dρ dφ dθ

[Intution: in 2-D dx dy = r dr dθ = ρ sin(φ) dr dθ. Extra factor of ρ comes from third dimension.]

Qotd

� Find volume in (x, y, z) : z ≥
√
x2 + y2, x2 + y2 + z2 ≤ 1.

� This region is symmetric around z-axis, so that gives θ ∈ [0, 2π]. Side view:

r = ‖(x, y)‖

z

φ

� Using the spherical coordinate system r = ρ sin(φ), z = ρ cos(φ), so z ≥ r is sin(φ) ≥ cos(φ)

� So the solid of interest is
θ = [0, 2π], φ = [0, π/4], ρ ∈ [0, 1].

The volume becomes:∫
(x,y,z)∈S

1 dx dy dz =

∫
(ρ,θ,φ)∈[0,1]×[0,π/4]×[0,2π]

ρ2 sin(φ) dφ dθ dρ

=

∫
ρ∈[0,1]

∫
θ∈[0,2π]

∫
φ∈[0,π/4]

ρ2 sin(φ) dφ dθ dρ

=

∫
ρ∈[0,1]

∫
θ∈[0,2π]

ρ2(− cos(φ))|π/40 dθ dρ

=

∫
ρ∈[0,1]

(2π)ρ2(1−
√

2/2) dρ

= (2π)(1−
√

2/2)ρ3/3|10

=
2

3
π

(
1−
√

2

2

)
≈ 0.6134 .
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27.2 Cylindrical coordinates

A different way of describing a point in R3 is called cylindrical coordinates, and you use them in a similar
fashion to spherical coordinates. This method is just polar coordinates with the z-coordinate appended.

Definition 94
Cylindrical coordinates for a point in R3 are a 3-tuple (r, θ, z) where

x = r cos(θ)

y = r sin(θ)

z = z

As with spherical coordinates, there is a simple differential transformation:

Fact 45
For cylindrical coordinates

dx dy dz = r dr dθ dz.

27.3 Linear approximations for f : Rm → Rn

Recall

� For a real-valued function f1 : Rm → R, the best linear approximation is:

f(v + h) ≈ f(v) +∇f · h.

� So for F : Rm → Rn, where

F (v) =

f1(v)
...

fn(v)


the best linear approximation is

F (v + h) ≈ F (v) +


∇f1(v) · h
∇f2(v) · h

...
∇fn(v) · h

 = F (v) +DF (v)h.

Here DF is the n × m matrix whose ith row is ∇fi. That makes the (i, j)th entry in the matrix
∂fi/∂xj .

Definition 95
For F : Rm → Rn written as F (v) = (f1(v), . . . , fn(v)), the derivative of F is the n × m matrix DF
whose (i, j)th entry is ∂fi/∂xj .

This derivative gives the best linear approximation of F in the following sense.

Fact 46
For F : Rm → Rn in C1, there exists a vector field ΦF : Rm → Rn such that limh→0∈Rm ΦF (h) =
(0, 0, . . . , 0) ∈ Rn, and

F (v + h) = F (v) +DF (v)h+ ‖h‖ΦF (h).

In other words, F (v) +DF (v)h is the best linear approximation to F near v.
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Example

� Find the best linear approximation of F (x, y) = (sin(x), sin(x+ 2y), xy) at (0, 0)?

� F (0, 0) = (0, 0, 0), v = (0, 0), h = (x, y), so now find the derivative matrix:

DF (0, 0) =

 ∂(sin(x))/∂x ∂(sin(x))∂y
∂(sin(x+ 2y))/∂x ∂(sin(x+ 2y))∂y

∂(xy)/∂x ∂(xy)/∂y

∣∣∣∣∣∣
(0,0)

=

 cos(x) 0
cos(x+ 2y) 2 cos(x+ 2y)

y x

∣∣∣∣∣∣
(0,0)

=

1 0
1 2
0 0


So our linear approximation is

FLA(x, y) = F (0, 0) +

1 0
1 2
0 0

(x
y

)
=

 x
x+ 2y

0

 .
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28 Determinants and Inverses

Question of the Day What is area spanned by the parallelogram with sides v = (0, 1), w =
(1, 2)?

Today

� Area spanned by vectors

Multiple ways to solve qotd

� First way: break parallelogram into two triangles:

1

1

2

v
w

v + w

� Each triangle has base of 1, height of 1, so total area is

(1/2)(1)(1) + (1/2)(1)(1) = 1.

� Let par(v, w) be the parallelogram spanned by v and w. Then:
Key observation: area(par(v, w)) = area(par(v, v + w))

v
w

v + w

(v + w) + w

a

b

c

d

e

area{v, w} = area(abd) + area(acd)

area{v, v + w} = area(abd) + area(bde)

But triangle acd is just the vector v plus the triangle acd! [So they must have the same area].

� Since w = v + (w − v), this also gives:

area(par(v, w)) = area(par(v, w − v))

= area(par(v, w − 2v)) = area(par((0, 1), (1, 0)) = 1
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v

w − 2v

� Note, area(par(2.3v, w)) = 2.3area(par(v, w)).

28.1 The determinant of a 2× 2 matrix

Definition 96
For vectors (a, b) and (c, d), the determinant of the vectors is a function with three properties

1: det((0, 1), (1, 0)) = 1

2: (∀α, β ∈ R)(∀v, w ∈ R2)(det(αv, βw) = αβ det(v, w))

3: (∀v, w ∈ R2)(det(v, w) = det(v + w, v) = det(v, v + w))

When the vectors are the rows of a square matrix A, then the determinant of the vectors is also called the
determinant of A.

Fact 47
The area of the parallelogram spanned by v and w is |det(v, w)|.

Fact 48
For a 2× 2 matrix,

det

(
a b
c d

)
= ad− bc.

[The proof requires that we show that this function has the three properties, and that any function with
these three properties must have this exact form, and you will see it in Linear Algebra.]

Example

� Find the area of the parallelogram spanned by (2,−3) and (6,−5):∣∣∣∣det

(
2 −3
6 −5

)∣∣∣∣ = |(2)(−5)− (−3)(6)| = |3| = 3 .

28.2 Inverses of matrices

� Determinants are useful because they

1: Allow us to determine when Av = b has a solution for b

2: Allow use to do general change of variables in integrals

� Today we’ll concentrate on the Av = b problem.

� Recall that v 7→ Av is a linear transformation:

(∀a, b ∈ R)(∀v, w ∈ Rn)(A(av + bw) = aAv + bAw).

When Av = b always has a solution, that means that the function that maps v to Av is invertible, and
the function that maps Av back to v is called the inverse function.
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Fact 49
If v 7→ Av has an inverse function, that inverse is also invertible, so can be written A−1w for some matrix
A−1.

[Proof in Linear Algebra.]

� From the definition of an inverse function, A−1(Av) = v. From the definition of matrix multiplication,
A−1(Av) = (A−1A)v, so A−1A must equal the indentity matrix I. The (i, j)th entry of I is 1 if i = j,
and 0 otherwise.

Definition 97
For A an n× n matrix, if A−1A = I, say that A−1 is the inverse of the matrix A.

Fact 50
If A has an inverse A−1, then the solution to the system of equations Av = b is v = A−1b.

� Not all matrices have inverses. If

Av =

(
0 0
0 0

)
v =

(
1
1

)
there is no solution for v, and so there cannot exist a matrix A−1.

� The determinant characterizes if a matrix has a solution.

Fact 51
A matrix A has an inverse if and only if det(A) 6= 0.

Examples

det

(
3 4
−6 −8

)
= 0, no inverse , det

(
3 4
0 1

)
= 3, has inverse.

� What if the function is not linear?

� Then can only say that locally it does not have an inverse, by using the linear approximation as a
proxy.

Theorem 10 (Inverse function theorem)
Let F : U → Rn where U ⊆ Rn is open be in C1. if DF has an inverse at v, there exists ε > 0 such that
for all z within distance ε of v, there exists a unique solution w such that F (w) = z. (Write w = F−1(z).)

� Say that F is locally invertible near F (w).

� Very useful when it comes to showing the systems of differential equations has a solution.

� In one dimension, easy to picture with function f(x) = 1 − x2. Note that f ′(x) 6= 0 (so invertible)
whenever x 6= 0. So function always has unique solution as long as f(x) 6= 1. However, for f(x) = 1,
x = 0, and all nearby y-coordinates have 2 solutions!

y1

y2

Change y1 a little bit, know how to change x : f(x) = y1. But change y2 a little bit, two solutions to
x : f(x) = y2.
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29 Change of Variables Formula

Question of the Day Find ∫
D

(
x− y
x+ y

)4

dy dx

where D is the triangular region between (0, 0), (1, 0), and (0, 1).

Today

� Custom design of coordinate systems

Making a problem simpler

� Change variables to another coordinate system

� LID

1: Limits

2: Integrand

3: Differential

� Today: how to change the differential

1-D

� Recall change of variables: for w = f(x), dw = f ′(x) dx.

� Example: solve
∫
x∈[0,5]

2x exp(−x2) dx.

� Let w = x2 to make exponential easier.

� Then x ∈ [0, 5] means w ∈ [0, 25].

� Also dw = 2x dx. So∫
x∈[0,5]

2x exp(−x2) dx =

∫
w∈[0,25]

2x exp(−x2) dx [Change limits]

=

∫
w∈[0,25]

exp(−x2) dw [Change differential]

=

∫
w∈[0,25]

exp(−w) dw [Change integrand]

= exp(−w)/(−1)|25
0

= 1− exp(−25) ≈ 1.000

29.1 Change of variables in n dimensions

Theorem 11 (Change of variables theorem)
Suppose F (x1, x2, . . . , xn) = (y1, y2, . . . , yn). Then

dy1 dy2 · · · dyn = |detDF (x1, . . . , xn)|dx1 dx2 · · · dxn

Definition 98
The Jacobian of a function F is |detDF |.
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Why?

� In 2-D, remember |detDF | is area spanned by vectors made from rows of DF . So |detDF | dx1 dx2

is area spanned by vectors where one vectors is length dx1 and other is length dx2.

� In n dimensionsl, |det(A)| is hyper volume of region spanned by the rows of A. Then multiply by all
the dxi to scale the vectors

Example: qotd

� Use transformation to make the integrand simpler:

s = x− y, t = x+ y

Then DF =

(
1 −1
1 1

)
, so |detDF | = |(1)(1)− (−1)(1)| = 2, so

ds dt = 2 dx dy.

� Now limits. In terms of x and y:

D = {(x, y) : x ≥ 0, y ≥ 0, x+ y ≤ 1}.

x

y

Note that x = (1/2)(s+ t), y = (1/2)(t− s). So

D = {(s, t) : (1/2)(s+ t) ≥ 0, (1/2)(t− s) ≤ 0, t ≤ 1}

s

t

� Transformed integral:

I =

∫
(s,t):s+t≥0,s−t≥0,t≤1

(s/t)4 (1/2) ds dt

= (1/2)

∫
t∈[0,1]

∫
s∈[−t,t]

(s/t)4 ds dt

= (1/2)

∫
t∈[0,1]

s5t−4(1/5)|t−t dt

= (1/2)

∫
t∈[0,1]

2t/5 dt

= (1/2)(t2/5)|10
= 1/10 = 0.1000
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Example changing differentials

� For s = u2v2 and t = v2 − u2, find ds dt in terms of dv du.

� Create the determinant:

DF =

(
∂s/∂u ∂s/∂v
∂t/∂u ∂t/∂v

)
=

(
2uv2 2u2v
−2u 2v

)
so

|detDF | = |(2uv2)(2v)− (2u2v)(−2u)| = |4uv3 + 4u3v|.

Note that the absolute value depends on the values of u and v:

|4uv3 + 4u3v| = (4uv3 + 4u3v)1(u ≥ 0, v ≥ 0)+

(4uv3 + 4u3v)1(u < 0, v < 0)−
(4uv3 + 4u3v)1(u < 0, v ≥ 0)−
(4uv3 + 4u3v)1(u ≥ 0, v < 0).

29.2 Polar coordinates transformation

To practice using the Jacobian, let’s use it to derive the formula:

dx dy = r dr dθ.

� Here x and y are functions of r and θ:

x = r cos(θ) = f1(r, θ)

y = r sin(θ) = f2(r, θ),

so for F (r, θ) = (f1(r, θ), f2(r, θ)),

DF =

(
∂f1/∂r ∂f1/∂θ
∂f2/∂r ∂f2/∂θ

)
=

(
cos(θ) −r sin(θ)
sin(θ) r cos(θ)

)
So

|detDF | = |r cos2(θ)− (−r) sin2(θ)| = |r(cos2(θ) + sin2(θ)| = r.

29.3 n dimensional transformations

� This works for n ≥ 3 dimensional transformations as well.

� Need to be able to calculate the determinant of an n by n matrix is.

� Just apply the rules in Definition 96 to get answer.

Fact 52
For a 3 by 3 matrix, the determinant is

det

a b c
d e f
g h i

 = aei+ bfg + cdh− afh− bdi− ceg.

Notes

� In general, the determinant of an n by n matrix has n! terms in the formula, so gets large very quick.
In linear algebra, you will learn a more efficient ways to compute the determinant of a matrix such as
Gaussian Elimination and QR factorization.

� Can use this to show that for the spherical coordinate transformation, |detDF | = ρ2 sin(φ).
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30 Implicit Functions

Question of the Day Consider the set of points (x, y) such that x2y + 3y3x4 − 4 = 0. For
instance (1, 1) is a point that satisfies this. For x values near 1, is there a unique solution for y
that makes (x, y) near (1, 1)?

Today

� The implicit function theorem

Example

� Consider the points (x, y) that satisfy x2 + y2 = 1.

� This is an implicitly defined curve, and the point (1, 0) is on the curve.

� For x near 1, there are two solutions for y near (1, 0)

� Now consider the point (−1/
√

2, 1/
√

2). For x near −1/
√

2, there is only a single solution for y.

Qotd

� We know that (1, 1) solves x2y + 3y3x4 − 4 = 0. What happens for x slightly larger than 1? Slightly
smaller? Is the y unique?

Definition 99
Consider the set of points that satisfies f(x, y) = c. If there is a unique solution y given x, call y = φ(x)
the function implicity determined by f .

� Remember circle example: f(x, y) = x2 + y2. Note ∂f/∂y = 2y. At y = 0, ∂f/∂y = 0. Turns out
that’s the only situation where there might not be an implicit function.

30.1 The Implicit function theorem

For the implicit equation f(x1, . . . , xn) = c, if I pick a variable xi and ask if there is a unique solution for xi
in terms of the other variables near some point a = (a1, . . . , an), then
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Theorem 12 (Implicit Function Theorem)
Let U ⊆ Rn be open and f : U → R be in C1. Let a = (a1, . . . , an) ∈ U , where f(a) = c, and Dif(a) =
∂f/∂xi|a 6= 0. Then there exists δ such that for all points within distance δ of (x1, . . . , xi−1, xi+1, . . . , xn),
there is a unique solution for xi satisfying f(x1, . . . , xn) = c that can be called

xi = φ(x1, . . . , xi−1, xi+1, . . . , xn).

Moreover, φ ∈ C1.

Notes

� If ∂f/∂y 6= 0, then φ always exists.

� If ∂f/∂y = 0, then φ might or might not exist.

1: Example. f(x, y) = x2 + y2 = 1 at (1, 1), ∂f/∂y = 0, and no inverse.

2: Example. f(x, y) = y3 − x = 0 at (0, 0), ∂f/∂y = 3y2 = 0, but y = φ(x) = x1/3 has a unique
inverse everywhere!

Qotd

� Set of points: f(x, y) = x2y + 3y3x4 − 4 = 0 near (1, 1).

� ∂f/∂y = x2 + 9y2x4. Plug in (1, 1) to get (∂f/∂y)(1, 1) = 10 6= 0.

� Hence y = φ(x) exists!

� Note that φ(x) might be hard to find though...

� On the other hand, finding φ′(x) in terms of x and y is easy!

1: Start with y = φ(x).

2: Differentiate both sides of f(x, y) = f(x, φ(x)) = c using the chain rule.

3: Substitute back in y = φ(x).

0 =
d

dx
f(x, φ(x))

=
d

dx
[x2φ(x) + 3φ(x)3x4 − 4

= 2xφ(x) + x2φ′(x) + 9φ(x)2φ′(x)x4 + 12φ(x)3x3

0 = 2xy + x2φ′(x) + 9y2φ′(x)x4 + 12y3x3

−2xy − 12y3x3 = φ′(x)[x2 + 9y2x4]

φ′(x) =
−2xy − 12y3x3

x2 + 9y2x4
.

� Applications similar to Inverse function theorem.

� Often used to show that differential equations have unique solutions.

� Works equally well for x as for y: If (∂f/∂x)(v) 6= 0, then can solve f(x, y) = c for x near v.
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30.2 Proof of the Implicit Function Theorem

Proof. Given f(x, y) = c is our set of points, let F (x, y) = (x, f(x, y)) be from R2 to R2. Then

DF (x, y) =

(
1 0

∂f/∂x ∂f/∂y

)
.

So detDF = 0⇔ ∂f/∂y = 0.
By the Inverse function theorem, that tells us that ∂f/∂y = 0 means that F (x, y) is locally invertible.

Consider the point (a, b) where f(a, b) = c. Then F (a, b) = (a, f(a, b)) = (a, c).
Let G : R2 → R2 be the inverse of F : R2 → R2. Then

G(F (x, y)) = (x, y),

since it is an inverse. But G(F (x, y)) = G(x, f(x, y)) = (x, y). So the first output of G is the same as the
first input.

That means we can write
G(s, t) = (s, g(s, t)),

where g(s, t) : R2 → R.
Now let φ(x) = g(x, c). Then we have:

F (x, φ(x)) = F (x, g(x, c))

= F (G(x, c))

= (x, c).

By the definition of F , F (x, φ(x)) = (x, f(x, φ(x))). The only way these both can be true is if c = f(x, φ(x)),
which makes φ(x) the inverse function that we are looking for!
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31 The Chain Rule

Question of the Day Suppose F : Rn → Rm and G : Rm → Rr. What should DFG◦F look like?

Today

� The chain rule for vector fields

Chain rule in 1-D

� Recall linear approximations:

f(x+ h) = f(x) + hf ′(x) + o(h)

g(w + j) = g(w) + jg′(w) + o(j).

So what is g(f(x+ h))?
g(f(x+ h)) = g(f(x) + hf ′(x) + o(h)).

Set w = f(x) and j = hf ′(x) + o(h). Then

g(f(x+ h)) = g(w + j)

= g(w) + jg′(w) + o(j)

= g(f(x)) + (hf ′(x) + o(h))g′(w) + o(hf ′(x) + o(h))

= g(f(x)) + hf ′(x)g′(w) + o(h)[g′(f(x)) + f ′(x)]

= g(f(x)) + hf ′(x)g′(f(x)) + o(h),

where we can ignore the g′(f(x) + f ′(x)) because it is just a constant.

� That means the derivative of g(f(x)) = [g ◦ f ](x) must be g′(f(x))f ′(x), or

[g ◦ f ]′ = [g′ ◦ f ]f ′.

31.1 The chain rule for vector fields

Fact 53 (Chain rule for vector fields)
Let F : Rn → Rm and G : Rm → Rr be in C1. Then

[G ◦ F ]′ = [DG ◦ F ]DF.

� This is one of those nice theorems where n-D form and 1-D form are exactly the same!

� Generalizes the chain rule that we had earlier for curves, P : R→ Rn, g : Rn → R,

[g ◦ C]′ = (∇g ◦ C) · C ′.

� When g : Rn → R, Dg = ∇g. And matrix multiplication when you have a row vector times a column
vector is the same as the dot product.

Chain rule for vector fields. Use the linear approximation idea:

G(F (v + h)) = G(F (v) +DF (v)h+ ‖h‖ΦF (v))

= G(F (v)) +DG(F (v))[DF (v)h+ ‖h‖ΦF (v)]+

‖DF (v)h+ ‖h‖ΦF (v)‖ΦG(DF (v)h+ ‖h‖ΦF (v)).

A fact from linear algebra gives that ‖DF (v)h‖ ≤ M ‖h‖ for some constant M . Because ΦG and ΦF both
go to 0 as h goes to zero, using this fact gives us that the last term can be written as ‖h‖Φ(h), where Φ(h)
is a matrix that is going to 0 as h goes to 0. Hence

G(F (v + h)) = G(F (v) +DF (v)h+ ‖h‖ΦF (v))

= G(F (v)) +DG(F (v))DF (v)h+ ‖h‖ [ΦF (v) + Φ(h)],

which means that DG(F (v))DF (v) must be the derivative of G(F (v)).
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31.2 Hessian as second derivative

� Recall earlier we treated the Hessian of a real valued function as a second derivative in finding out if
a critical point was a local max or local min.

� g : Rn → R:

∇g = 0, Hg positive definite ⇒ local min

∇g = 0, Hg negitive definite ⇒ local max.

� Today we note: Hg = D(∇g). It is a second derivative!

� First derivative of g is ∇g, a row vector.

� Second derivative of g is n× n matrix.

� Third derivative of g is a three dimensional array.
[Sometimes called a tensor, since tensors can also be represented by multidimensional array.]

� Second derivative: Hg has (i, j)th entry DjDig.

� Third derivative: (i, j, k)th entry DkDjDig.

� Can make fourth and higher derivatives as well!

� We’ll stick to second derivatives in this class.

31.3 Example

Suppose F (x, y) = (x2 − y, x+ y) and G(r, s) = (r − s, r + s).

1: What is G(F (x, y))?

2: What is D[G ◦ F ]?

To answer the first question, we treat the outputs of F as the inputs of G. So

G(F (x, y)) = G(x2 − y, x+ y) = (x2 − x− 2y, x2 + x).

To answer the section question, we could directly find the derivative of G(F (x, y)):

D[G ◦ F ](x, y) =

( x y

x2−x−2y 2x− 1 −2
x2+x 2x+ 1 0

)
Or we could use the chain rule!

DF =

( x y

x2 − y 2x −1
x+ y 1 1

)
, DG =

( r s

r − s 1 −1
r + s 1 1

)
.

Since DG is constant, [DG ◦ F ](x, y) = DG =

(
1 −1
1 1

)
.

So the chain rule gives:

D[G ◦ F ](x, y) = [DG ◦ F ](x, y)DF (x, y)

=

(
1 −1
1 1

)(
2x −1
1 1

)
=

(
2x− 1 −2
2x+ 1 0

)
.
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Problems

31.1: Suppose H(r, θ) = (r cos(θ), r sin(θ)) and G(x, y) = (xy, x2 + y2).

(a) What is
[G ◦H](r, θ)?

(b) Find D[G ◦H] directly.

(c) Find D[G ◦H] using the chain rule.
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32 Parameterizing Surfaces

Question of the Day Parameterize the surface of a sphere of radius ρ.

Today

� Describing functions: Implicit v. parameterizations

Curves

� Implicit: f(x, y) = c, for example

x2 + y2/4 = 2, x− y2 = 6

� Parameterized curve: C(t) = (x(t), y(t)). [Call t the parameter.] For example

(sin(t), cos(t))

Implicit description

� Implicit: f(x, y, z) = c, for example
x+ 2y2 − z = 4

� Parameterized surface: f(t, r) = (x(t, r), y(t, r), z(t, r)). [Call t and r the parameters.] For example

Y (t) = (t, t2, et)

When does an implicit description equal a parameterization?

� When for each (x, y, z) satisfying f(x, y, z) = c, there exists t such that x = x(t), y = y(t), and z = z(t).
For example, if

A = {(x, y) : x2 + y2 = 1}, B = {(cos(t), sin(t)) : t ∈ [0, 2π]},

then A = B.

� Why? Well B ⊆ A since sin2(t) + cos2(t) = 1 For x and y such that x2 + y2 = 1, then setting
t = arctan(y/x) if x ≥ 0 and t = arctan(y/x) + π if x < 0 gives (cos(t), sin(t)) = (x, y). So A ⊆ B.

32.1 Parameterizing a sphere

Describing a sphere

� Start with implicit description

– Let ρ be the radius of the sphere. Then the implicit description is: x2 + y2 + z2 = ρ2

� Use spherical coordinates to parameterize the surface.

– Spherical coordinates use parameters θ, φ, ρ:

x = ρ sin(φ) cos(θ)

y = ρ sin(φ) sin(θ)

z = ρ cos(φ).

Here ρ is fixed, so the parameters are φ and θ.

S(φ, θ) = ρ(sin(θ) cos(θ), sin(θ) cos(θ), cos(φ)).

� To parameterize a curve, need single parameter (like t)

� To parameterize a surface, need two parameters (like (φ, θ))
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32.2 Torus, cone, paraboloid, cylinder, ellipsoid

Examples

� A torus (doughnut)

10/9/2015 OneNote Online

https://onenote.officeapps.live.com/o/onenoteframe.aspx?Fi=SD510CA6BFCED84078!1168&H=emul&C=5_810_SN2SKYWACWSHI&ui=enUS&rs=enU… 1/3

 
Friday, October 9, 2015  2:12 PM 

Parameterize

x = (a+ b cos(φ)) cos(θ)

y = (a+ b cos(φ)) sin(θ)

z = b sin(φ)

Constants

a = distance from origin to center of cross section

b = radius of cross section

� How the parameters work:

θ ∈ [0, 2π] = Rotates cross section around z-axis

φ ∈ [0, 2π) = Makes cross section a circle

Note that φ here is different from φ in spherical coordinates!

� Cross section:

10/9/2015 OneNote Online

https://onenote.officeapps.live.com/o/onenoteframe.aspx?Fi=SD510CA6BFCED84078!1168&H=emul&C=5_810_SN2SKYWACWSHI&ui=enUS&rs=enU… 1/3

 
Friday, October 9, 2015  2:12 PM 

Cone

� Constant angle with z-axis, call it α. Parameters are t which is distance from the origin, and θ equals
angle of rotation around z-axis.
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10/9/2015 OneNote Online

https://onenote.officeapps.live.com/o/onenoteframe.aspx?Fi=SD510CA6BFCED84078!1168&H=emul&C=5_810_SN2SKYWACWSHI&ui=enUS&rs=enU… 2/3

Parameterize

z = t cos(α)

x = t sin(α) cos(θ)

y = t sin(α) sin(θ)

Written another way:
S(t, θ) = (t sin(α) cos(θ), t sin(α) sin(θ), t cos(α)).

Paraboloid

10/9/2015 OneNote Online

https://onenote.officeapps.live.com/o/onenoteframe.aspx?Fi=SD510CA6BFCED84078!1168&H=emul&C=5_810_SN2SKYWACWSHI&ui=enUS&rs=enU… 2/3

For α a constant, and parameters t ≥ 0, θ ∈ [0, 2π), let

S(t, θ) = (αt cos(θ), αt sin(θ), t2).

Cylinder

10/9/2015 OneNote Online

https://onenote.officeapps.live.com/o/onenoteframe.aspx?Fi=SD510CA6BFCED84078!1168&H=emul&C=5_810_SN2SKYWACWSHI&ui=enUS&rs=enU… 3/3

For a a constant, and parameters θ ∈ [0, 2π), z ∈ R, let

S(θ, z) = (a cos(θ), a sin(θ), z)

123



Ellipsoid

� Like a stretched sphere.

� Need three constants for scaling in each of three dimensions, a, b, c, two parameters φ ∈ [0, π],
θ ∈ [0, 2π).

S(φ, θ) = (a sin(φ) cos(θ), b sin(φ) sin(θ), c cos(φ)).

General surface of revolution

� Want to rotate f(r) around the z-axis:

10/9/2015 OneNote Online

https://onenote.officeapps.live.com/o/onenoteframe.aspx?Fi=SD510CA6BFCED84078!1168&H=emul&C=5_810_SN2SKYWACWSHI&ui=enUS&rs=enU… 1/3

 
Friday, October 9, 2015  2:12 PM 

S(r, θ) = (r cos(θ), r sin(θ), f(r))
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33 Finding the area of a surface

Question of the Day Find the surface area of a paraboloid z = x2 + y2 for z ∈ [0, 2].

Today

� Finding areas of surfaces

Setting up the integral

� First step: parameterize the surface. Ex, surface of a sphere:

S(t, s) = (sin(t) cos(s), sin(t) sin(s), cos(t)).

Next, let ||dS|| be the area of the parallelogram spanned by differential elements, dt and dθ.

10/9/2015 OneNote Online

https://onenote.officeapps.live.com/o/onenoteframe.aspx?Fi=SD510CA6BFCED84078!1168&H=emul&C=5_810_SN2SKYWACWSHI&ui=enUS&rs=enU… 2/3

� Add up the area (integrate) to get total area:

S =

∫
t∈[0,π]

∫
θ∈[0,2π]

||dS||

� The question: what is relationship between dS and dt ds?

� Recall, for ds the length of a differential element of a curve C(t) ∈ C1,

ds = ‖C ′(t)‖ dt.

Want a similar formula for dS.

33.1 Finding the area spanning by two vectors

� In 2-D, used the determinant to get this area.

� In 3-D, determinant gives volume of parallelepiped.

� Let v, w ∈ R3. If a is perpendicular to both v and w, and ‖a‖ = 1, then

det

av
w


is the area spanned by v and w.
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33.2 Cross products

Definition 100
For v = (v1, v2, v3), and w = (w1, w2, w3), let v×w be the cross product of v and w, where the formula
is

v × w = (v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1).

Note: v, w, and v × w are all elements of R3.

Fact 54
v × w is perpendicular to both v and w.

Proof. Note

(v × w) · v = (v2w3 − v3w2)v1 + (v3w1 − v1w3)v2 + (v1w2 − v2w1)v3

= v2w3v1 − v3w2v1 + v3w1v2 − v1w3v2 + v1w2v3 − v2w1v3

= 0.

So v × w and v are perpendicular. A similar calculation shows that v × w and w are perpendicular.

Mnemonic for cross product

� Note v2w3 − v3w2 is derivative of

(
v2 v3

w2 w3

)
.

Fact 55
The cross product of v = (v1, v2, v3) and w = (w1, w2, w3) can be written as

det

(1, 0, 0) (0, 1, 0) (0, 0, 1)
v1 v2 v3

w1 w2 w3

 .

Of course, using this mnemonic requries knowing how to compute determinants of 3 by 3 matrices!

Fact 56
The area of the parallelogram spanned by v and w in R3 is ‖v × w‖.

Proof. Let a be the area of the parallelogram spanned by v and w. Then since v × w is perpendicular to v
and w, a ‖v × w‖ is the volume of the parallelepiped spanned by v, w, and v × w.

This can also be found using the determinant, which gives

a ‖v × w‖ =

∣∣∣∣∣∣det

v2w3 − v3w2 v3w1 − v1w3 v1w2 − v2w1

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣
= [v2

2w
2
3 − v2v3w2w3] + [v2

3w
2
1 − v1v3w1w3]

+ [v2
1w

2
2 − v1v2w1w2]− [v2v3w2w3 − v2

3w
2
2]

− [v1v3w1w3 − v2
1w

2
3]− [v1v2w1w2 − v2

2w
2
1]

= v2
2w

2
3 + v2

3w
2
1 + v2

1w
2
2 + v2

3w
2
2 + v2

1w
2
3 + v2

2w
2
1

− 2v1v2w1w2 − 2v1v3w1w3 − 2v2v3w2w3.

This last expression is the same as

‖v × w‖2 = (v2w3 − v3w2)2 + (v3w1 − v1w3)2 + (v1w2 − v2w1)2

Hence a ‖v × w‖ = ‖v × w‖2 which means either v × w = 0 or a = ‖v × w‖. It is straightforward to check
that if ‖v × w‖ = 0, then w = λv, so a = 0 as well.
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33.3 Surface integrals

This gives the following fact:

Fact 57
Let S(t, s) be a parameterized surface. Then

||dS|| =
∥∥∥∥∂S∂t × ∂S

∂s

∥∥∥∥ ds dt.

Qotd

� First parameterize the paraboloid (multiple ways to do this, this way makes later calculations easier)

S(x, y) = (x, y, x2 + y2), {(x, y) : x2 + y2 ≤ 2}.

� Next find ∂S/∂x and ∂S/∂y:
∂S

∂x
= (1, 0, 2x),

∂S

∂y
= (0, 1, 2y).

� Find ∂S/∂x× ∂S/∂y:

∂S

∂x
× ∂S

∂y
= ((0)(2y)− (2x)(1), (2x)(0)− (1)(2y), (1)(1)− (0)(0))

= (−2x,−2y, 1).

� Next, find ‖∂S/∂x× ∂S/∂y‖:∥∥∥∥∂S∂x × ∂S

∂y

∥∥∥∥ = [(−2x)2 + (−2y)2 + 11]1/2 = (4(x2 + y2) + 1)1/2.

� Now we have an integral!

S =

∫
z∈[0,2]

dS =

∫
(x,y):x2+y2≤2

(4(x2 + y2) + 1)1/2 dx dy.

� Best way to solve this integral: convert to polar coordinates.

r2 = x2 + y2, dx dy = r dr dθ.

So

S =

∫
r≤2

∫
θ∈[0,2π]

(4r2 + 1)1/2r dθ dr

= 2π

∫
r≤2

(4r2 + 1)1/2r dr

= 2π
(4r2 + 1)3/2

(3/2)8

∣∣∣∣r=2

r=0

= 2π[93/2 − 13/2]/12 = (13/3)π ≈ 13.61 .

33.4 The curl of a vector field

The cross product also shows up in the curl of a vector field F (x, y, z) = (f1(x, y, z), f2(x, y, z), f3(x, y, z)).
The curl is the three dimensional equivalent of the rotation.
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Definition 101
For F : R3 → R3, the curl of F is

(∇× F ) =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
× (f1, f2, f3)

=

(
∂f3

∂y
− ∂f2

∂z
,
∂f1

∂z
− ∂f3

∂x
,
∂f2

∂x
− ∂f1

∂y

)
.
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34 More Surface Integrals

Question of the Day Find the surface area of the cone z = r for z ∈ [0, 1].

Today

� More examples of surface integrals.

Finding surface integrals

� To find
∫

(t,s)∈A ||dS||:

1: Parameterize the surface at S(t, s)

2: Find ‖∂S/∂t× ∂S/∂s‖
3: Solve the integral ∫

(t,s)∈A
||dS|| =

∫
(t,s)∈A

∥∥∥∥∂S∂t × ∂S

∂s

∥∥∥∥ ds dt

Qotd

� Always several ways to parameterize surface

� Using x and y:

S1(x, y) = (x, y,
√
x2 + y2)

� Using polar coordinates
S2(r, θ) = (r cos(θ), r sin(θ), r)

� Try S2 first:
∂S2

∂r
= (cos(θ), sin(θ), 1),

∂S2

∂θ
= (−r sin(θ), r cos(θ), 0).

So

∂S2

∂r
× ∂S2

∂θ
= (0− r cos(θ),−0− r sin(θ), r cos2(θ) + r sin2(θ))

= (−r cos(θ),−r sin(θ), r)

That means ∥∥∥∥∂S2

∂r
× ∂S2

∂θ

∥∥∥∥ =

√
r2[cos2(θ) + sin2(θ)] + r2 = r

√
2

� Hence the surface area is∫
A

dS =

∫
(r,θ):r≤1

r
√

2 dr dθ

=

∫
θ∈[0,2π]

∫
r∈[0,1]

r
√

2 drdθ by Tonelli

= 2πr2
√

2/2|10 = π
√

2 ≈ 4.442 .

129



What is the surface area of the unit sphere?

� Implicit equation of the sphere: x2 + y2 + z2 = 1

� Use spherical coordinates to parameterize sphere:

x = sin(φ) cos(θ)

y = sin(φ) sin(θ)

z = cos(φ)

S(φ, θ) = (sin(φ) cos(θ), sin(φ) sin(θ), cos(φ))

� So that means:

∂S

∂φ
= (cos(φ) cos(θ), cos(φ) sin(θ),− sin(φ))

∂S

∂θ
= (− sin(φ) sin(θ), sin(φ) cos(θ), 0)

∂S

∂φ
× ∂S

∂θ
= (+ sin2(φ) cos(θ),+ sin2(φ) sin(θ),

cos(φ) sin(φ) cos2(θ) + cos(φ) sin(φ) sin2(θ))

= sin(φ)(sin(φ) cos(θ), sin(φ) sin(θ), cos(φ))

Taking the norm then gives:∥∥∥∥∂S∂φ × ∂S

∂θ

∥∥∥∥ = | sin(φ)|
√

sin2(φ) cos2(θ) + sin2(φ) sin2(θ) + cos2(φ)

= | sin(φ)|
√

sin2(φ) + cos2(φ)

= | sin(φ)|

Hence the surface area of the sphere is

S =

∫
θ∈[0,2π],φ∈[0,π]

| sin(φ)| d(θ, φ)

=

∫
θ∈[0,2π]

∫
φ∈[0,π]

sin(φ) dθ dφ by Tonelli

= 2π(− cos(φ))|π0 = 2π(−(−1)− (−1)) = 4π ≈ 12.56 .

34.1 Other applications of surface integrals

� So far, just done
∫
A
dS to find the surface area of the sphere.

� Can also put an integrand into the integral.

Definition 102
Let ψ(v) be the temperature of point v on a surface. Call

∫
A
ψ ||dS|| the heat flux of the surface.

Example

� For the surface f(x, y) = x2 + y, the temperature at point (x, y) for x ∈ [0, 1] is 2x. Find the heat flux
over the surface for x from 0 to 1 and y from -1 to 1.

� Key as before is putting dS in terms of dx dy. Here

S(x, y) = (x, y, f(x, y)),
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so

∂S

∂x
= (1, 0, 2x),

∂S

∂y
= (0, 1, 1)

∂S

∂x
× ∂S

∂y
= ((0)(1)− (2x)(1), (1)(1)− (2x)(0), (1)(1)− (0)(0))

= (−2x, 1, 1)∥∥∥∥∂S∂x × ∂S

∂y

∥∥∥∥ =
√

(−2x)2 + (1)2 + 12 =
√

2 + 4x2

� So ∫
A

2x dS =

∫
x∈[0,1]

∫
y∈[−1,1]

2x
√

2 + 4x2 dy dx

= 2

∫
x∈[0,1]

2x
√

2 + 4x2 dx

= 2(2 + 4x2)3/2/(3/2)/4|10
= 2(1/6)[63/2 − 1] ≈ 4.565

Actually have a shortcut that helps in cases like these:

Fact 58
If S(x, y) = (x, y, f(x, y)), then

‖dS‖ =

∥∥∥∥∂S∂x × ∂S

∂y

∥∥∥∥ dx dy =

√
12 +

(
∂f

∂x

)2

+

(
∂f

∂y

)2

dx dy.

� The proof just comes from working through the cross product.

� Compare to a fact learned in Calc I about arc length

Fact 59
If C(t) = (t, f(t)), then

||dC(t)|| = ‖C ′(t)‖ dt =
√

1 + (f ′(t))2 dt.

34.2 Manifolds

Idea

� A manifold is a collection of points that locally looks like a straight line (in 1-D) a plane (in 2-D)
standard three dimensional space (in 3-D) and so on.

� On surface of Earth, when you look around locally, the surface appears to be a flat plane.

� For a point (1/
√

2, 1/
√

2) on the unit circle, locally the curve appears to be a flat line.

� Informally, you can bend the curve slightly in order to get a straight line locally. Curve is not too
“crinkly”.

� A curve embedded in 2-D or 3-D or higher dimensional space is a 1-manifold.

– Circle, parabola, hyperbola, cubic

� A surface embedded in 3 (or higher) dimensional space is a 2-manifold.

– Möebius strip
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– Klein bottle

� A solid sculpture in 4 (or higher) dimensional space is a 3-manifold.

Problems

34.1: Let S be the surface defined by the intersection of the half cylinder {(x, y, z) : x ≥ 0, x2 + y2 ≤ 9} with
the plane z = (1/2)y. If the temperature at point (x, y, z) on this surface is x, find the heat flux from
the surface.
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35 Curvature

Question of the Day What is the curvature of the curve C(t) = (t, t2) at (2, 4)?

Today

� Curvature

� Manifolds with low curvature are almost flat

� Manifolds with high curvature are very bendy

� Small circles (merry go round) very high curvature, strong acceleration as you travel along the curve

� Large circles (the Equator) very low curvature, low acceleration as you travel.

� How quickly speed changes gives curvature

� Curves with high curvature change quickly, low curvature change slowly

� Engineering materials tend to have a maximum curvature beyond which they break.

Definition 103
Let C(t) ∈ C2. Let T (t) = C ′(t)/ ‖C ′(t)‖ be the normalized tangent vector. Let s(t) be the arclength of
the curve over times [0, t]. Then the curvature at a point is

κ =

∥∥∥∥dTds
∥∥∥∥ .

� Usually use the Greek letter kappa, κ to represent curvature.

Fact 60
The curvature can also be found by

κ =

∥∥∥∥dTdt
∥∥∥∥ · 1

‖C ′(t)‖
.

This is known as the two derivatives form of curvature.

Proof. Recall that ds = ‖C ′(t)‖ dt. So by the chain rule:

dT

ds
=
dT

dt
· dt
ds

=
dT

dt
· 1

‖C ′(t)‖
.

Example

� What is the curvature of a circle of radius a?

� First must parameterize. Any way of parameterizing will do!

C(t) = (a cos(3t), a sin(3t)).

[Have constant of 3 to show that method of parameterizing doesn’t matter.]

� Find ‖C ′(t)‖.

‖C ′(t)‖ =
√

(−3a sin(3t))2 + (3a cos(3t))2

=

√
(3a)2(sin2(3t) + cos2(3t))

= 3a
√

1 = 3a.
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� Find T (t):

T (t) =
C ′(t)

‖C ′(t)‖
= (cos(3t), sin(3t)).

[Note that ‖T (t)‖ should always equal 1, which it does here.]

� Find κ: ∥∥∥∥dTdt
∥∥∥∥ · 1

‖C ′(t)‖
=
‖(−3 sin(3t), 3 cos(3t))‖

3a
=

3

3a
=

1

a

� The bigger radius the circle, the smaller the curvature.

Fact 61
The units of curvature are the inverse of the units of distance.

35.1 Curvature for 1-manifolds in 2-D

Qotd

� First need a parameterization, go with the easy one:

C(t) = (t, t2).

Then C ′(t) = (1, 2t), so ‖C ′(t)‖ =
√

1 + 4t2.

� Let r = ‖C ′(t)‖ =
√

1 + 4t2 to make the calculations simpler. Then note dr/dt = 8t(1/2)(1+4t2)−1/2 =
4t/r. So

T (t) = (1, 2t)/r = (1/r, 2t/r)

T ′(t) = (−(1/r2)(4t/r), 2/r − 2t(1/r2)(4t/r))

� That means that

T ′(t)

‖C ′(t)‖
=
T ′(t)

r
= (−4t/r4, 2/r2 − 8t2/r4)

= (1/r4)(−4t, 2r2 − 8t2)

= (1/r4)(−4t, 2− 8t2 + 8t2)

= (1/r4)(−4t, 2)

Taking the norm gives

‖T ′(t)‖
‖C ′(t)‖

= (1/r4)
√

(−4t)2 + 22

= (1/r4)
√

16t2 + 4

= (1/r4)
√

4 ·
√

1 + 4t2

= 2/r−3 = 2(1 + 4t2)−3/2 .

Can generalize this calculation to get the following result:

Fact 62
Suppose f(t) ∈ C2. Then for C(t) = (t, f(t)),

κ =
|f ′′(t)|

(1 + f ′(t)2)3/2
.
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35.2 Coordinate free curvature

� Note denominator: for C(t) = (t, f(t)), (1 + f ′(t)2)1/2 = ‖C ′(t)‖.

� What determines curvature is how quickly the turn occurs for a car traveling along the curve.

� Physically, this is the acceleration perpendicular to the direction of travel.

� ‖C ′(t)× C ′′(t)‖ captures this, but must be properly normalized.

� Working through the details gives the following relationship that can be useful for theory.

Fact 63
For C(t) ∈ C2:

κ =
‖C ′(t)× C ′′(t)‖
‖C ′(t)‖3

.

This called the coordinate free representation of curvature.

� In physics terms, curvature is the area of the parallelogram spanned by velocity and acceleration,
divided by the speed cubed.

� Might have heard that general relativity treats gravity as the curvature of spacetime.

� Can define the curvature of 2-manifolds, or n-manifolds as well, leads to useful mathematical tools for
theoretical physics such as general relativity.

Problems

35.1: What is the curvature of a circle of radius 2?
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36 The Divergence Theorem

Question of the Day What is the flux of F (x, y, z) = (x, y, z) over the surface of the sphere
x2 + y2 + z2 = a2?

Today

� Flux

� The Divergence Theorem in 3D

36.1 Flux

� “Flux” is Latin for flow

� Flux is the flow across a curve or surface:

� Only part normal to curve/surface contributes to flux∫
R

F · dN,

where dN is differential normal to the curve/surface.

� In general, hard to calculate. For S(u, v),

dN =
∂S

∂u
× ∂S

∂v
du dv.

Calculating flux by hand over a 2-manifold R

1: Parameterize R as S(u, v)

2: Calculate, ∂S/∂u and ∂S/∂v

3: Take the cross product between ∂S/∂u and ∂S/∂v

4: Take the dot product of this and F

5: Solve the two dimensional integral in u and v that results.

36.2 The Divergence Theorem in 3D

An easier way

� When R is a closed surface with an inside and an outside, things are much easier.

� Can use the higher dimensional version of the Divergence Theorem.

Theorem 13 (Divergence Theorem)
Let F : Rn → Rn and S ⊂ Rn have a closed boundary. Then∫

∂S

F · dN =

∫
S

div(F ) dRn,

where div(F ) = ∇ · F .
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Finding divergence

� Recall

∇ =

(
∂

∂x1
, . . . ,

∂

∂xn

)
.

� For F (x1, . . . , xn) = (y1, . . . , yn),

∇ · F =
∂y1

∂x1
+
∂y2

∂x2
+ · · ·+ ∂yn

∂xn
.

Qotd

� Surface of a sphere is a closed 2-manifold

� Can apply Div. Thm!

� First, find the divergence of F (x, y, z) = (x, y, z):

div(F ) =
∂x

∂x
+
∂y

∂y
+
∂z

∂z
= 1 + 1 + 1 = 3.

� So by the Div Thm,

flux =

∫
S

3 dx dy dz = 3(4/3)πa3 = 4πa3.

The long way

� Sometimes, have to do problems the long way

� For instance, when surface is not closed

Qotd the long way

� Step 1: parameterize the sphere:

S(φ, θ) = (a sin(φ) cos(θ), a sin(φ) sin(θ), a cos(φ)).

� Step 2: Find ∂S/∂φ and ∂S∂θ

∂S

∂φ
= (a cos(φ) cos(θ), a cos(φ) sin(θ),−a sin(φ))

∂S

∂θ
= (−a sin(φ) sin(θ), a sin(φ) cos(θ), 0)

� Step 3: Find s(φ, θ) = ∂S/∂φ× ∂S∂θ

s(φ, θ) = (0(a cos(φ) sin(θ))− (a sin(φ) cos(θ))(−a sin(φ)),

− ((a cos(φ) sin(θ))(0)− (−a sin(φ) sin(θ))(−a sin(φ)))

(a cos(φ) cos(θ))(a sin(φ) cos(θ))− (−a cos(φ) sin(θ))(−a sin(φ) sin(θ)))

= (a2 sin2(φ) cos(θ), a2 sin2(φ) sin(θ), a2 sin(φ) cos(φ)[cos2(θ) + sin2(θ)])

= a sin(φ)(x, y, z)

� Step 4: Take F (x, y, z) · s(φ, θ)

(x, y, z) · a sin(φ)(x, y, z) = a2 sin(θ)(x2 + y2 + z2)

= a3 sin(θ)
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� Step 5: Integrate over (φ, θ) ∈ [0, π]× [0, 2π]. By Fubini can break into iterated integral, so:∫
∂S

F · dN =

∫ π

φ=0

∫ 2π

θ=0

a3 sin(φ) dθ dφ

= a3

∫ π

φ=0

2π sin(φ) dφ

= 2πa3(− cos(φ))|2π0
= 2πa3(−(−1)− (−1)) = 4πa3.

The right hand rule

� Note: s(u, v) = −s(v, u)

� So how do you know which order to do?

� Right hand rule: s(u, v) put right hand, curl through u then v, thumb points in direction of ∂S/∂u×
∂S/∂v.

� Positive φ runs from north pole to south pole on sphere, positive θ runs from west to east. Curl fingers
on globe, thumb points outwards.
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37 Differential Forms

Question of the Day What do the FTC, Generalized FTC, Green’s Thm and the Divergence
Theorem have in common?

Today

� Stokes’ Theorem

In this course

� Fundamental Theorem of Calculus (FTC):∫
[a,b]

f ′(x) dx = f(b)− f(a)

� Generalized FTC: ∫
C([t0,t1])

∇φ(x) dx = φ(C(t1))− φ(C(t0))

� Green’s Theorem ∫
∂A (ccw)

F · dC =

∫
A

rot(F ) dx dy

� Divergence Theorem (2D) ∫
∂A

F · dN =

∫
A

div(F ) dx dy

� Divergence Theorem (higher dimensions)∫
∂V

F · dS =

∫
V

div(F ) dRn

37.1 Stokes’ Theorem

All those results are a special case of the following general result:

Theorem 14 (Stokes’ Theorem)
Let Ω be an oriented smooth n-manifold and ω an n-differential form that is nonzero over a compact
region. Then ∫

∂Ω

ω =

∫
Ω

dω.

To understand this theorem, we need to understand what a differential form is. The first thing needed is
the wedge product

37.2 Differential forms

There are 0-forms, 1-forms, 2-forms, etcetera...

Definition 104
For U ∈ R an open set, a function f : U → R is a 0-form. For f ∈ C1, the differential of a 0-form is
d[f(x)] = f ′(x) dx.
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Definition 105
A 1-form is a 0-form times a differential, such as dx, dy, or dz. The sum of 1-forms is also a 1-form.

� Ex: w = x2y dx, w = x2z dx+ exp(z) dy + z2y dz are all 1-forms.

� Note that the differential of a 0-form is a 1-form

Definition 106
An n-differential form consists of a real valued function of n variables multiplied by n different differ-
entials, or the sum of such objects.

� Ex: w = x2y dx dy + xz dx dz is a 2-form.

� Ex: (x+ y + z) dx dy dz is a 3-form.

37.3 Wedge Product

� The wedge product gives us a way to multiply differential forms.

� Let ω1 be an `-form, ω2 be a k-form. Then

ω3 = ω1 ∧ ω2

is an (`+ k)-form.

The first property of the wedge product is that like a regular product, it is distributive. The picture is
as follows:

ω1

ω2

ω1 + ω2

ω3
a

c

b

The area spanned by ω1 and ω3 plus the area spanned by ω2 and ω3 is the same as the area spanned by
ω1 + ω2 and ω3 (just shift by −ω3 the triangle abc). Mathematically, this means that we want

(ω1 ∧ ω3) + (ω2 ∧ ω3) = (ω1 + ω2) ∧ ω3.

The second property relates to the right hand rule. If we take the fingers of our right hand, and curl
from ω3 to ω1, then the thumb points in the positive z direction. So ω3 ∧ω1 is positive. However, if we start
at ω1 and curl our fingers of our right hand through ω3, then our thumb points in the negative z direction.

The area of the parallelogram that they span is the same though. That gives us the property that
ω1 ∧ ω3 = −ω3 ∧ ω1. A generalized version of this property, together with the distributive and other
properities of the wedge product, are given below.

Axioms for the wedge product

1: Zero rule: if (∀ω)(ω + 0 = ω), then ω ∧ 0 = 0.

2: Distributive: (ω1 + ω2) ∧ η = (ω1 ∧ η) + (ω2 ∧ η).

3: Associative: For 1-forms ω and η, ω ∧ η = −η ∧ ω.

4: Anticommutative: Let ω be a k-form and η and `-form. Then ω ∧ η = (−1)k`(η ∧ ω).
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5: 0-forms are constants: For f a 0-form,

ω ∧ (fη) = (fω) ∧ η = f(ω ∧ η).

6: Basic laws
dx1 dx2 · · · dxn ∧ dy = dx1 dx2 · · · dxn dy.

and
dx ∧ dx = 0.

37.4 Differentiating forms

Here are the rules for finding dω given ω:

1: If ω is an n-form, then dω is an (n+ 1)-form.

2: Additive rule d(ω1 + ω2) = dω1 + dω2

3: Product rule d(ω ∧ η) = dω ∧ η) + (−1)k(ω ∧ dη).

4: Differential of something small is 0:
d(dω) = 0.

5: Connecting to regular differentiation: For f(x1, . . . , xn) a 0-form,

df = ∇f · (dx1, . . . , dxn) =
∂f

∂x1
dx1 + · · ·+ ∂f

∂xn
dxn.

37.5 The Generalized Fundamental Theorem of Calculus

Consider a curve integral over a curve C ∈ C1 that starts at a and moves along a path to b. Then consider∫
C:a→b

∇φ · dC.

Writing ∇φ =
(
∂φ
∂x ,

∂φ
∂y

)
, we have∫

C:a to b

=

∫
C:a to b

(
∂φ

∂x
,
∂φ

∂y

)
· (dx, dy)

=

∫
C:a to b

∂φ

∂x
dx+

∂φ

∂y
dy

=

∫
C:a to b

dφ.

By Stokes’ Theorem: ∫
C:a to b

dφ =

∫
a and b

φ = φ(b)− φ(a).

37.6 Green’s Theorem

� Recall F (x, y) = (f1(x, y), f2(x, y)), then∫
C([t0,t1])

F · dC =

∫ t1

t0

f1 dx+ f2 dy.

� Let ω = f1 dx+ f2 dy. That is a 1-form!
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� Now to find dω:

dω = d(f1 dx) + d(f2 dy)

= d(f1) ∧ dx+ (−1)0f1 ∧ d(dx) + d(f2) ∧ dy + (−1)0f1 ∧ d(dy)

= d(f1) ∧ dx+ d(f2) ∧ dy

=

[
∂f1

dx
dx+

∂f1

dy
dy

]
∧ dx+

[
∂f2

dx
dx+

∂f2

dy
dy

]
∧ dy

=
∂f1

dx
dx ∧ dx+

∂f1

dy
dy ∧ dx+

∂f2

dx
dx ∧ dy +

∂f2

dy
dy ∧ dy

=
∂f1

dy
dy ∧ dx+

∂f2

dx
dx ∧ dy

=
∂f2

dx
dx ∧ dy − ∂f1

dy
dx ∧ dy

= rot(F ) dx dy.

� So by Stokes’ Theorem: ∫
A

rot(F ) dx dy =

∫
∂A

f1 dx+ f2 dy.

37.7 2× 2 Jacobian

Consider F (x, y) = (u(x, y), v(x, y)). Then

du =
∂u

∂x
dx+

∂u

∂y
dy,

and

dv =
∂v

∂x
dx+

∂v

∂y
dy,

So

du ∧ dv =

(
∂u

∂x
dx+

∂u

∂y
dy

)
∧
(
∂v

∂x
dx+

∂v

∂y
dy

)
=

(
∂u

∂x
dx ∧ ∂v

∂x
dx

)
+

(
∂u

∂x
dx ∧ ∂v

∂y
dy

)
+

(
∂u

∂y
dy ∧ ∂v

∂x
dx

)
+

(
∂u

∂y
dy ∧ ∂v

∂y
dy

)
=
∂u

∂x
· ∂v
∂x

(dx ∧ dx) +
∂u

∂x
· ∂v
∂y

(dx ∧ dy) +
∂u

∂y
· ∂v
∂x

(dy ∧ dx) +
∂u

∂y
· ∂v
∂y

(dy ∧ dy).

Since dx ∧ dx = dy ∧ dy = 0,

du ∧ dv =
∂u

∂x
· ∂v
∂y

(dx ∧ dy)− ∂u

∂y
· ∂v
∂x

(dx ∧ dy)

=

[
∂u

∂x
· ∂v
∂y
− ∂u

∂y
· ∂v
∂x

]
dx ∧ dy

= det(DF ) dx ∧ dy.

The last step uses the value that

DF =

(
∂u/∂x ∂u/∂y
∂v/∂x ∂v/∂y

)
.

Now, it is important to note that if the limits for x and y are oriented so that both dx and dy are always
positive, and after changing variables the limits for u and v and also oriented so that du and dv are always
positive, then the areas spanned will always be positive, which is why this is usually written:

du dv = |det(DF )| dx dy.

The 3 by 3 and higher level Jacobians can be calculated the same way.
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Problems

37.1: Show the Divergence Theorem in 2D using Stokes’ Theorem.

37.2: Show the Divergence Theorem in 3D using Stokes’ Theorem.
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A Problem Solutions

1.1: Show that (0, 2) and (3, 0) are perpendicular vectors

Solution The vector (0, 2) has length 2 and (3, 0) has length 3. The difference between them is the
vector (0, 2) − (3, 0) = (−3, 2) which has length

√
(−3)2 + 22 =

√
13. Since 22 + 32 = (

√
13)2, by the

Pythagorean Theorem the two vectors must be perpendicular.

1.2: Show that (2, 3) and (−6, 4) are perpendicular vectors.

Solution Let v1 = (2, 3) and v2 = (−6, 4). Then the length of these two vectors are ‖v1‖ =
√

22 + 32 =√
13 and ‖v2‖ =

√
(−6)2 + 42 =

√
52.

The length of the vector connecting point v1 to v2 is

‖v1 − v2‖ =
√

(2− (−6))2 + (3− 4)2 =
√

64 + 1 =
√

65.

Since (
√

13)2 +(
√

52)2 = (
√

65)2, by the Pythagorean Theorem the two vectors must be perpendicular.

1.3: Set up the integral to find the arclength of along the following curves:

(a) P (t) = (cos(t), sin(t)), 0 ≤ t ≤ τ
(b) P (t) = (t, t2, t3), 0 ≤ t ≤ 1

(c) P (t) = (exp(t), t,
√
t), 1 ≤ t ≤ 2

(d) P (t) = (1, 1/(1 + t)), 0 ≤ t ≤ 10

Solution To set up these integrals, use the fact that

ds = ‖P ′(t)‖ dt,

where ‖P ′(t)‖ is the speed as the particle travels along the curve. For our examples:

(a) P ′(t) = (− sin(t), cos(t)), ‖P ′(t)‖ =
√

(− sin(t))2 + cos(t)2 =
√

1 = 1. So the integral is:∫ τ

t=0

1 dt.

(b) P ′(t) = (1, 2t, 3t2), ‖P ′(t)‖ =
√

12 + (2t)2 + (3t2)2, so the integral is:

∫ 1

0

√
1 + 4t2 + 9t4 dt.

(c) P ′(t) = (exp(t), 1, 1/(2
√
t)), ‖P ′(t)‖ =

√
exp(t)2 + 12 + 1/(2

√
t)2, so the integral is

∫ 2

t=1

√
exp(2t) + 1 + 1/(4t) dt.

(d) P ′(t) = (0,−1/(1 + t)2), ‖P ′(t)‖ =
√

02 + (−1/(1 + t))2. So

∫ 10

t=0

1

1 + t
dt.

1.4: Use Wolfram Alpha to numerically solve the above integrals to 4 significant figures.

Solution

(a) Since τ = 2π, this can be found in Wolfram Alpha using:
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integral of 1 from 0 to 2*pi

which gives 6.283

(b) Using

integral of sqrt(1+4t^2+9t^4) from 0 to 1

gives 252.5

(c) Using

integral of sqrt(exp(2*t)+1+1/(4*t)) from 1 to 2

gives 4.805.

(d) Using

integral of 1/(1+t) from 0 to 10

gives 2.397

2.1: What is (x, y) + (3, 4) written as a single vector?

Solution (x+ 3, y + 4)

2.2: True or false: the vectors (1, 2, 3) and (3, 2, 1) are the same vector.

Solution False! [With vectors (unlike sets), the order of the components does matter.]

2.3: The Euclidean norm of (−5, 0) is what?

Solution 5

2.4: List the points in {2, 3} × {−1, 0, 1}.
Solution This is the Cartesian product, or direct product of the sets, and will be:

{(2,−1), (2, 0), (2, 1), (3,−1), (3, 0), (3, 1)}

2.5: Write the following sums of scaled vectors as a single vector:

(a) (2, 3) + (−1, 4)

(b) (x, y) + (w, z)

(c) (2, 3) + 2(−1, 4)

(d) (x, y) + 2(w, z)

Solution

(a) (1, 7)

(b) (x+ w, y + z)

(c) (0, 11)

(d) (x+ 2w, y + 2z)

2.6: Find ‖(3,−2, 0, 2)‖.
Solution The norm of a vector is the square root of the sum of the squares of the entry of the vector,
so

‖(3,−2, 0, 2)‖ =
√

32 + (−2)2 + 02 + 22 = 4.123.

3.1: What is (x, y) · (3, 4)?

Solution 3x+ 4y
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3.2: What is (3)(3,−2)?

Solution (9,−6)

3.3: What is c(3,−2) where c ∈ R?

Solution (3c,−2c)

3.4: What is the cosine of the angle between (1, 0) and (0, 1)?

Solution 0

3.5: If v and w are perpendicular, what is v · w?

Solution 0

3.6: (a) What is (2, 3) · (−1,−1)?

(b) What is (1, 0,−1) · (7, 3, 4)?

(c) What is (x, y) · (2,−2)?

Solution

(a) (2)(−1) + (3)(−1) = -5

(b) (1)(7) + (0)(3) + (−1)(4) = 1 + 0− 4 = -3

(c) 2x− 2y

3.7: Find the angle between vectors (2, 3) and (−1,−4).

Solution (Solution not included.)

4.1: True or false: Speed at a point is always a real number.

Solution True.

4.2: True or false: Let f(x, y) = 2x+ xy2. Then f ∈ C1.

Solution True.

4.3: State whether or not the following parameterized curves are in C1.

(a) P (t) = (t, t2, et)

(b) P (t) = (|t|, sin(t))

Solution

(a) In C1.

(b) Not in C1.

4.4: A particle moves along a trajectory so that at time t its location is (t, t2, exp(t)).

(a) What is its velocity at time t = 1?

(b) What is its acceleration at time t = 1?

(c) What is its speed at time t = 1?

Solution

(a) The velocity is just P ′(t), or

(1, 2t, exp(t)

(b) The acceleration is just P ′′(t), or

(0, 2, exp(t)
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(c) The speed is the norm of the velocity, so

‖P ′(t)‖ =
√

12 + (2t)2 + exp(t)2 =
√

1 + 4t2 + exp(2t) .

4.5: For P (t) = (sin(t), t2), find the tangent line to P at t = 0.

Solution First find P ′(t) = (cos(t), 2t). Then the equation of the tangent line is

P1(t) = P (t0) + P ′(t0)(t− t0).

Here t0 = 0, so

P1(t) = (0, 0) + (1, 0)(t− 0)⇒ P1(t) = (t, 0)

is the tangent line.

4.6: Suppose that a particle has a circular path parameterized by

C(t) = ((3
√

3/2) sin(t), ((3
√

3/2) cos(t)).

(a) Find the velocity of the particle at t = τ/4.

(b) Find the speed of the particle at t = τ/4.

(c) Find the acceleration of the particle at t = τ/4.

(d) Write the equation of the tangent line to the path at t = τ/4.

Solution

(a) The velocity is just C ′(t):

C ′(t) = ((3
√

3/2) cos(t),−(3
√

3/2) sin(t)), C ′(τ/4) = (0,−3
√

3/2)

(b) The speed is the norm of the velocity:

‖C ′(τ/4)‖ =

√
02 + (−3

√
3/2)2 = 3

√
3/2 ≈ 2.598 .

(c) The acceleration is the derivative of the velocity:

C ′′(t) = (−(3
√

3/2) sin(t),−(3
√

3/2) cos(t)), C ′′(τ/4) = (−3
√

3/2, 0) .

(d) The tangent line is

f1(t) = C(τ/4) + C ′(τ/4)(t− τ/4) =
3
√

3

2
[(1, 0) + (0, 1)(t− τ/4)]

so the tangent line is

3
√

3

2
(1, t− τ/4) .

5.1: Graph the level sets of x = (1/2)y2.

Solution (Solution not included.)

5.2: Find the following partial derivatives.

(a) ∂(x2y)/∂x.

(b) ∂(x2y)/∂y.

(c) ∂(x2y)/∂z.

(d) ∂(exp(−2x))/∂x.
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(e) ∂(r/w)/∂r.

Solution

(a) ∂(x2y)/∂x = y .

(b) ∂(x2y)/∂y = x2 .

(c) ∂(x2y)/∂z = 0 .

(d) ∂(exp(−2x))/∂x = −2 exp(−2x) .

(e) ∂(r/w)/∂r = 1/w .

5.3: Find the following partial derivatives.

(a) ∂[x2y + 2y]/∂y.

(b) ∂[x2y + 2y]/∂x.

(c) ∂[x2y + 2y]/∂z.

Solution

(a) x2 + 2.

(b) y.

(c) 0.

6.1: Prove the following:
(∃x)(2x = 10)

Solution.

Proof. Let x = 5. Then 2x = 10.

6.2: Prove that lim(x,y)→(0,0) 1− x+ y = 0.

Solution. (Solution not included.)

7.1: (a) Find the best linear approximation for f(x, y) = sin(x+ 2y) near (π, 0).

(b) Use your approximation to estimate sin(x+ 2y) at (x, y) = (π + 0.1, 0.1).

Solution.

(a) The best linear approximation of f is

f1((x0, y0) + (hx, hy) = f(x0, y0) +∇f(x0, y0) · (hx, hy).

Here (x0, y0) = (π, 0) and f(x0, y0) = sin(π) = 0. Since ∇ sin(x+2y) = (cos(x+2y), 2 cos(x+2y)),
∇ sin(x+ 2y)|(x,y)=(π,0) = (−1,−2), and the approximation is

f1((x0, y0) + (hx, hy)) = −hx − 2hy .

(b) Here hx = hy = 0.1, so the approximation is -0.3000 .

This approximation was done in terms of (hx, hy), how far away we move from the point (π, 0). It can
also of course, be entirely done in terms of x and y by using (hx, hy) = (x− x0, y − y0).

(a) The best linear approximation of f is

f1(x, y) = f(x0, y0) +∇f(x0, y0) · (x− π, y − 0).

Using f(π, 0) = 0 and ∇f(π, 0) = (−1,−2) from before,

f1(x, y) = −x− 2y + π.
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(b) Pluggin in x = π + 0.1 and y = 0.1 gives f1(π + 0.1, 0.1) = -0.3000 as before.

8.1: Are the following sets of points written as explicit functions or as implicit functions?

(a) y = 2x+ 3

(b) x2 + y2 = 4

(c) z = x exp(−xy)

(d) x exp(−xy)− z = 0

Solution.

(a) Explict

(b) Implicit

(c) Explicit

(d) Implicit

8.2: Find the tangent plane to x2 + y2 + 2z2 = 7 at the point (1, 2, 1)

Solution. (Solution not included.)

8.3: Find the tangent line to x3 − y2 = −1 at the point (2, 3).

Solution. (Solution not included.)

8.4: Find the directional derivative of f(x, y) = (x2, exp(y)) in the direction (1,−1) from point (2, 0).

Solution. (Solution not included.)

9.1: What is ∆(x2 + y2)?

Solution. Since (∂/∂x)(x2 +y2) = 2x, (∂2/∂x2)(x2 +y2) = (∂/∂x)(2x) = 2. Similarly, (∂2/∂y2)(x2 +
y2) = 2 as well, so

∆(x2 + y2) =

[
∂2

∂x2
+

∂2

∂y2

]
(x2 + y2) = 2 + 2 = 4 .

9.2: Be sure to justify your answers.

(a) Is f(x, y, z) = (x2 + y2 + 2z2)−1 rotationally symmetric?

(b) Is f(x, y, z) = (x2 + y2 + z2)−1 rotationally symmetric?

(c) Suppose f : Rn → R can be written as f(v) = 1/ ‖v‖2. Find the gradient of f .

Solution. (Solution not provided.)

10.1: Which of the following sets are bounded? (You do not have to prove your answer.)

(a) [4,∞)

(b) (−∞,∞)

(c) [0, 3)

Solution.

(a) unbounded The set of numbers goes off to infinity.

(b) unbounded This one goes off to infinity in both directions!

(c) bounded Any point in the set is at most distance 3 from the origin.

10.2: Suppose f(x) = x3 − x.

(a) Find maxx∈[−1,2] f(x).
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(b) Find arg maxx∈[−1,2] f(x).

(c) Find minx∈[−1,2] f(x).

(d) Find arg minx∈[−1,2] f(x).

Solution. (Solution not included.)

11.1: Which of the following sets are bounded? (You do not have to prove your answer.)

(a) {(x, y) : x2 + 2y2 ≤ 4}
(b) {(x, y) : x2 ≥ y}
(c) {(x, y, z) : x2 + y2 + z2 = 1}

Solution.

(a) bounded Any point in the set is distance at most 2 from the origin.

(b) unbounded For any y value, x can be anything from y2 up to∞, so infinitely far from the origin.

(c) bounded Every point in the set is exactly distance 1 from the origin.

11.2: Suppose f(x, y) = exp(−x2 − 2y2). Let A = {(x, y) : x2 + y2 ≤ 4}.

(a) Find maxA f(x, y).

(b) Find arg maxA f(x, y).

(c) Find minA f(x, y).

(d) Find arg minA f(x, y).

Solution. (Solution not included.)

12.1: (a) What is maxx∈[0,∞) x
2 exp(−2x)?

(b) What is maxx∈(−∞,∞) 3− x2?

(c) What is minx∈(−∞,∞) |x|?
Solution.

(a) Let f(x) = x2 exp(−x). Then

f ′(x) = 2x exp(−2x) + x2(− exp(−2x)) = exp(−2x)x(2− x).

Since exp(−2x) and x are nonnegative in [0,∞), f ′(x) ≥ 0 for 2− x ≥ 0 (so x ≤ 2) and f ′(x) ≤ 0
for 2− x ≤ 0 (so x ≥ 2). Hence

max
x∈[0,2]

x2 exp(−x) = 22 exp(−2) and max
x∈[2,∞)

x2 exp(−x) = 22 exp(−2).

Putting this together gives

max
x∈[0,∞)

x2 exp(−x) = 4e−2 ≈ 0.5413 .

(b) Let f(x) = 3− x2. Then f ′(x) = −2x, so f ′(x) ≥ 0⇔ x ≤ 0 and f ′(x) ≤ 0⇔ x ≥ 0. Hence

max
x∈[0,∞)

3− x2 = 3,

and
max

x∈(−∞,0]
3− x2 = 3.

Taken together, maxx∈(−∞,∞) = 3 .
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(c) For x ∈ [0,∞), f(x) = x and f ′(x) = 1 ≥ 0. For x ∈ (−∞, 0], f(x) = −x and f ′(x) = −1 ≤ 0.
Hence

min
x∈[0,∞)

|x| = min
x∈[0,∞)

x = 0,

and
min

x∈(−∞,0]
|x| = min

x∈(−∞,0]
−x = 0.

Taken together, these give
min

x∈(−∞,∞)
|x| = 0 .

13.1: Solve the following optimzation problems.

(a) Find max{x+ y2|2x2 + y2 ≤ 2}.
(b) Find min{x+ y2|2x2 + y2 ≤ 2}.
(c) Find arg max{x+ y2|2x2 + y2 ≤ 2}.

Solution. Let A = {(x, y) : 2x2 + y2 ≤ 2}. Then A is closed and bounded, and so is compact. First
find any critical points in int(A) by setting ∇f to the zero vector.

Hence f(x, y) = x + y2, and so ∇f(x, y) = (1, 2y) which never equals (0, 0) so there are no critical
points in the interior.

Now bdy(A) = {(x, y) : 2x2 + y2 = 2}, and g(x, y) = 2x2 + y2 and both g and f are C1 functions, so
the remaining critical points are when ∇f = λ∇g for some nonzero constant λ.

∇(x+ y2) = λ∇(2x2 + y2)⇒ (1, 2y) = λ(4x, 2y),

so the three equations we need to solve are:

1 = λ · 4x
2y = λ(2y)

2x2 + y2 = 2.

If y = 0, then 2x2 = 2, x2 = 1 and x ∈ {−1, 1}. So two possibilities are {(−1, 0), (1, 0)}.
If y 6= 0, then dividing through the second equation by 2y gives λ = 1, so 4x = 1 and x = 1/4. Then
y2 = 2− 2(1/4)2 and y ∈ {

√
15/8,−

√
15/8}.

Filling out the table of function evaluations gives:

(x, y) x+ y2

(−1, 0) −1
(1, 0) 1

(1/4,
√

15/8) 17/8 = 2.125

(1/4,−
√

15/8) 17/8 = 2.125

Now use the extreme value theorem to get the following.

(a) 2.125

(b) −1

(c) {(0.2500, 1.369), (0.2500,−1.369)}

14.1: Graph {(x, y) : x3 − y2 = 0, x ∈ [−1, 1]}
Solution. Note that if x3 − y2 = 0, then x3 = y2. Since y2 ≥ 0, that means x3 ≥ 0, so really we need
only worry about x ∈ [0, 1]. Taking the square root of both sides of x3 = y2 gives x3/2 = |y|. Hence
the graph looks like:
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1

-1

14.2: (a) Find max{x2 + y|x3 − y2 = 0, x ∈ [−1, 1]}
(b) Find arg max{x2 + y|x3 − y2 = 0, x ∈ [−1, 1]}
(c) Find min{x2 + y|x3 − y2 = 0, x ∈ [−1, 1]}
(d) Find arg min{x2 + y|x3 − y2 = 0, x ∈ [−1, 1]}

Solution. Here f(x, y) = x2 + y and g(x, y) = x3 − y2. All points lie on the boundary. The function
f(x, y) ∈ C1 everywhere, but g(x, y) ∈ C1 except at (0, 0), (1, 1) and (1,−1), so those points have to
be dealt with separately.

Where g(x, y) is C1, we have
∇g = (3x2,−2y).

Hence ∇f = (2x, 1) = λ(3x2,−2y) together with g(x, y) = 0 gives the following three equations:

2x = λ · 3x2

1 = λ · λ(−2y)

x3 − y2 = 0.

If x = 0 then y = 0. If x 6= 0, then λ = (2/3)(1/x). It cannot be the case that y = 0, so λ = −1/(2y).
Hence

2

3x
= − 1

2y
⇒ y =

3

4
x.

Plugging that into x3 − y2 = 0 gives

x3 − (9/16)x2 = x2(x− 9/16) = 0,

so either x = 0 (and again y = 0 in that case) or x = 9/16, and y2 = (9/16)3 so y = ±(9/16)3/2 = 27/64.

Making a table of function values gives:

(x, y) x2 + y

(0, 0) 0
(1, 1) 2

(1,−1) 0
(9/16, 27/64) 189/256 = 0.7382 . . .

(9/16,−27/64) −27/256 = −0.1054 . . ..

With this table we can answer all parts of the question.

(a) The maximum value is 2 .

(b) The argument that maximizes the function is {(1, 1)} .

(c) The minimum value of the function is −0.1054 .
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(d) The argument that minimizes the function is the one point {(9/16,−27/64) = (0.5625,−.4218 . . .) .

14.3: (a) Find maxx2−1≤y≤1−x2 x2 − 3y2

(b) Find minx2−1≤y≤1−x2 x2 − 3y2

Solution. (Solution not provided.)

15.1: Multiply the following row vectors times column vectors:

(a)
(
3 2

)(−1
1

)
.

(b)
(
3 2

)(x
y

)
.

Solution

(a) −3 + 2 = -1

(b) 3x+ 2y

15.2: Calculate the following products of matrices.

(a)

(
2 4
−1 −1

)(
0 1
1 0

)

(b)

(
1 −2 3
2 2 4

)1 0 1
0 1 0
1 0 1


Solution

(a)

(
4 2
−1 −1

)

(b)

(
4 −2 4
6 2 6

)

15.3: What is

(
1/2 1/2
1/3 2/3

)2

?

Solution 1
36

(
15 21
14 22

)
≈
(

0.4166 0.5833
0.3888 0.6111

)
16.1: Let f(x, y) = sin(x+ 2y). Find the Hessian of f .

Solution This is the matrix of second partial derivatives. First take the first derivatives:

∇f(x, y) =
(
cos(x+ 2y) 2 cos(x+ 2y)

)
Now take the second derivatives to get the Hessian. For instance,

∂2

∂x∂y
=

∂

∂x

∂

∂y
sin(x+ 2y) =

∂

∂x
2 cos(x+ 2y) = −2 sin(x+ 2y).

Doing this for all four entries of the matrix gives

Hf(x, y) =

(
− sin(x+ 2y) −2 sin(x+ 2y)
−2 sin(x+ 2y) −4 sin(x+ 2y)

)
.
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16.2: Continuing the last problem, find the second order Taylor approximation to f around the point (π/2, 0).

Solution First we have f(π/2, 0) = 1, ∇f(0, 0) =
(
0 0

)
and

Hf(0, 0) =

(
−1 −2
−2 −4

)
.

Hence

f2(x, y) = f(π/2, 0) +∇f(π/2, 0)

(
x− π/2

y

)
+

1

2

(
x− π/2 y

)
Hf(π/2, 0)

(
x− π/2

y

)
= 1 + (1/2)[(x− π/2)2(−1) + (x− π/2)(−2)(y) + (y)(−2)(x− π/2) + (−4)(y)2

= 1− x2/2− (π/2)x− π2/4− 2xy + πy − 2xy + πy − 4y2

= 1− π2/8− x2/2 + (π/2)x+ πy − 2xy − 2y2.

16.3: Suppose f(x, y) = cos(x+ 2y).

(a) Find the gradient of f .

(b) Find the Hessian of f .

(c) What is f2(x, y), the second order approximation to f at (x, y) = (0, 0)?

(d) In what direction should one move from (τ/4, τ/4) in order to increase the value of f as quickly
as possible?

Solution

(a) This is ∇f = (− sin(x+ 2y),−2 sin(x+ 2y)) .

(b) Take the derivatve again to get:

Hf = D(∇f) =

(
− cos(x+ 2y) −2 cos(x+ 2y)
−2 cos(x+ 2y) −4 cos(x+ 2y)

)
.

(c) The 2nd order approximation is f2(x, y) = f2(0, 0) + (x, y)∇f(0, 0) + 1
2 (x, y)Hf(0, 0)

(
x
y

)
, which

becomes in this case:

f2(x, y) = 1 +
1

2

(
x y

)(−1 −2
−2 −4

)(
x
y

)
,

which simplifies to

1− (1/2)x2 − 2xy − 2y2 .

(d) This is just the gradient evaluated at (τ/4, τ/4), so (1, 2) .

17.1: Are the following matrices positive definite, negative definite, or neither?

(a)

(
1 0
0 1

)
(b)

(
−1 0
0 −1

)
(c)

(
3 2
2 2

)
(d)

(
3 3
3 2

)
Solution
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(a) Note that (
a b

)(1 0
0 1

)(
a
b

)
= a2 + b2,

so as long as a and b are not both 0, this must be positive so the matrix is positive definite. Of

course, we could also apply our test: 1 > 0 and 02 − (1)(1) < 0, so the matrix is positive definite.

(b) This is the negative of the previous matrix, so must be negative definite.

(c) Here 3 > 0 and 22 − (3)(2) = −2 < 0, so the matrix is positive definite.

(d) Here 3 > 0 so it cannot be negative definite, but 32 − (3)(2) = 3 > 0, so it is not positive definite

either. The matrix is neither.

18.1: State whether or not Tonelli’s Theorem, compact Fubini’s Theorem, both, or neither apply to the
following integrals.

(a)
∫

(x,y)∈R2 x
2 + y2 dR2.

(b)
∫

(x,y)∈[0,2]×[−1,1]
x+ y dR2.

(c)
∫

(x,y)∈[0,2]×[−1,1]
x+ |y| dR2.

(d)
∫

(x,y)∈[0,∞)×[0,∞)
10− (x− 2)2 + y2 dR2.

Solution

(a) Tonelli. The function is nonnegative, so Tonelli’s applies. Compact Fubini does not apply, since
the region is unbounded.

(b) Fubini. The function is continuous and [0, 2] × [−1, 1] is compact, so Fubini does apply. The
function is negative in some places (such as (0.3, 0.5)) and positive in others (such as (0.7, 0.5)),
so Tonelli can not be applied.

(c) Both. Here the limits of integration are compact as in the last example, but now the function is
nonnegative, so both Fubini and Tonelli can be used.

(d) Neither. The limits of integration are unbounded, and there are places where the function is
both positive and negative (such as (2, 1) and (10, 3)).

18.2: Calculate the following integral:

I =

∫
(x,y)∈[0,π/3]×[0,2π/3]

sin(x+ 2y) dR2.

Solution For A = [0, π/3] × [0, 2π/3], there are places where f(x, y) < 0, for instance f(π/4, 0) =√
2/2 > 0 but f(π/4, π/2) = sin(5π/4) = −

√
22 < 0. So Tonelli cannot be used.

However, the region [0, π/3]×[0, π] is closed and bounded, and so compact, and sin(x+2y) is continuous,
so the compact Fubini theorem can be applied to give:∫

A

sin(x+ 2y) dA =

∫ π/3

x=0

∫ 2π/3

y=0

sin(x+ 2y) dy dx

=

∫ π/3

x=0

−(1/2) cos(x+ 2y)|2π/30 dx

=

∫ π/3

x=0

(1/2)[cos(x) + cos(x+ 4π/3)] dx

= (1/2)[sin(x) + sin(x+ 4π/3)]|π/30

= (1/2)[sin(4π/3) + sin(8π/3)− (sin(0) + sin(4π/3)]

= (1/2)[
√

3/2] ≈ 0.4330.
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19.1: Let B be the region strictly inside the triangle connecting the points (0, 0), (1, 0), and (1, 1). Find∫
B

x−3/2 dR2

or show that it does not converge.

Solution The graph of B looks like:

(0, 0) (1, 0)

(1, 1)

This triangle can be described using three inequalities:

y ≥ 0, x ≤ 1, x ≤ y.

Since the region inside the triangle is open, the region is not compact, so we cannot invoke the compact
Fubini condition.

However, x−3/2 is always nonnegative inside the triangle, so Tonelli can be applied to state∫
B

x−3/2 dR2 =

∫ 1

x=0

∫ x

y=0

x−3/2 dy dx

=

∫ 1

x=0

x−3/2y|x0 dx =

∫ 1

x=0

x−1/2 dx

= x1/2/(1/2)|10
= 2 .

19.2: Find ∫
y≤x+2

xy

(1 + x2)(1 + y2)
dR2,

or show that it does not converge.

Solution The region {(x, y) : y ≤ x+ 2} can be written as

A1 ∪A2 ∪A3 ∪A4,

where

y = x+ 2

A3 A1

A2 A4
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Note f is nonnegative on A1 and A2, and nonpositive on A3 and A4. So we can use Tonelli on each of
these regions.

So ∫
A1

xy

(1 + x2)(1 + y2)
dR2 =

∫ ∞
x=0

∫ x+2

y=0

xy

(1 + x2)(1 + y2)
dR2

=

∫ ∞
x=0

x(1/2) ln(1 + y2)

1 + x2
|x

2

0 dR2

=

∫ ∞
x=0

1

2

x ln(1 + (x+ 2)2)

1 + x2
dx

Now note that x ln(1 + (x+ 2)2)/(1 + x2) > x/(1 + x2), and∫ ∞
x=0

x

1 + x2
= (1/2) ln(1 + x2)|∞0 ) =∞,

so the integral over A1 is infinity.

Trying the same thing over A4, we get:∫
A4

xy

(1 + x2)(1 + y2)
dR2 =

∫ ∞
x=0

∫ 0

y=−∞

xy

(1 + x2)(1 + y2)
dR2

=

∫ ∞
x=0

x(1/2) ln(1 + y2)

1 + x2
|x

2

0 dR2

The inside limit of the y integral is −∞ regardless of the value of x, so the overall integral is −∞.
Since the integral over A1 is ∞ and over A2 is −∞, then the overall integral over A1 ∪ A2 ∪ A3 ∪ A4

does not converge.

20.1: Find r(A) for the following examples:

(a) A = (0, 3)× (4, 8).

(b) A = ((0, 3)× (4, 8)) ∪ ((−1, 1)× (−2, 2)).

(c) A = (0, 3)× (4, 8)× (10, 12).

(d) A = [0, 3]× [4, 8]× [10, 12].

Solution

(a) This is a single rectangle with area (3− 0)(8− 4) = 3 · 4 = 12 .

(b) This is a pair of rectangles with areas 3 · 4 = 12 and (1− (−1))(2− (−2)) = 2 · 4 = 8. Then r(A)

is the sum 20 .

(c) A is now a three dimensional box, the volume is the product of the side lengths: (3 − 0)(8 −
4)(12− 10) = 24 .

(d) This is the same as the last problem but with closed intervals rather than open intervals, but that

does not change the volume, so it is still 24 .

21.1: Find ∫
x2+y2≤9

1

(x2 + y2)1/4
dR2.

Solution Transform to polar coordinates. Remember LID for limits, integrand, and differential.

First change the limits: ∫
r2≤9,θ∈[0,τ ]

1

(x2 + y2)1/4
dR2,
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next change the integrand: ∫
r2≤9,θ∈[0,τ ]

1

(r2)1/4
dR2,

and lastly change the differential: ∫
r2≤9,θ∈[0,τ ]

1

r1/2
r dr dθ.

Simplify ∫
r∈[0,3],θ∈[0,τ ]

r1/2 dr dθ.

We can use Tonelli because the integrand is nonnegative or Fubini because the limits are closed and
bounded and the integrand is continuous to write the integral as an iterated integral and solve.∫

r∈[0,3],θ∈[0,τ ]

r1/2 dr dθ =

∫ 3

r=0

∫ τ

θ=0

r1/2 dθ dr

=

∫ 3

r=0

τr1/2 dr

= τr3/2/(3/2)|30
= τ2

√
3 ≈ 21.77.

31.1: Suppose H(r, θ) = (r cos(θ), r sin(θ)) and G(x, y) = (xy, x2 + y2).

(a) What is
[G ◦H](r, θ)?

(b) Find D[G ◦H] directly.

(c) Find D[G ◦H] using the chain rule.

Solution

(a)

G(H(r, θ) = G(r cos(θ), r sin(θ))

= (r2 sin(θ) cos(θ), r2[sin2(θ) + cos2(θ)])

= (r2 sin(θ) cos(θ), r2)

(b) Remember for the derivative of a vector field, the outputs go on the rows and the inputs on the
columns:

D[G ◦H](r, θ) =

( r θ

r2 sin(θ) cos(θ) 2r sin(θ) cos(θ) r2[cos2(θ)− sin2(θ)]
r2 2r 0

)

(c) Now let’s use the chain rule. First we need DH and DG:

DH =

( r θ

r cos(θ) cos(θ) −r sin(θ)
r sin(θ) sin(θ) r cos(θ)

)
, DG =

( x y

xy y x
x2 + y2 2x 2y

)
Since H(r, θ) = (r cos(θ), r sin(θ)),

[DG ◦H](x, y) =

(
r sin(θ) r cos(θ)

2r cos(θ) 2r sin(θ)

)
.
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Multiplying the DH gives:

[DG ◦H](x, y)DH(x, y) =

(
r sin(θ) r cos(θ)

2r cos(θ) 2r sin(θ)

)(
cos(θ) −r sin(θ)
sin(θ) r cos(θ)

)
=

(
2r sin(θ) cos(θ) r2(cos2(θ)− sin2(θ))

2r 0

)
which is the same derivative we found by direct computation.

34.1: Let S be the surface defined by the intersection of the half cylinder {(x, y, z) : x ≥ 0, x2 + y2 ≤ 9} with
the plane z = (1/2)y. If the temperature at point (x, y, z) on this surface is x, find the heat flux from
the surface.

Solution Use parameters r and θ (as in polar/cylindrical) coordinates to parameterize the surface.
Then x = r cos(θ), y = r sin(θ), and z = (1/2)y = (1/2)r sin(θ). So the integral is

I =

∫
S

r cos(θ) ‖dS‖ .

To find ‖dS‖, first look at dS:

dS =
∂S

∂r
× ∂S

∂θ
= (cos(θ), sin(θ), (1/2) sin(θ))× r(− sin(θ), cos(θ), (1/2) cos(θ))

= r((1/2) sin(θ) cos(θ)− (1/2) sin(θ) cos(θ), (1/2) sin(θ)(− sin(θ)− cos(θ)(1/2) cos(θ),

cos(θ) cos(θ)− sin(θ)(− sin(θ)))

= r(0,−1/2, 1).

So ‖dS‖ = |r|
√

02 + (−1/2)2 + 1 = r
√

5/4. Hence the integral is

I =

∫
S

r cos(θ)r
√

5/4 dS

Here S has r ∈ [0, 3] (since 3 is the radius of the cylinder) and θ ∈ [−τ/4, τ/4] (since x ≥ 0.) Since
the integrand is continuous and (r, θ) are in a compact space, Fubini can be used to turn this into an
iterate integral and give:

I =

∫ 3

r=0

∫
θ∈[−τ/4,τ/4]

r2 cos(θ)
√

5/4 dθ dr

=
√

5/4

∫ 3

r=0

r2 sin(θ)|τ/4θ=−τ/4 dr

= 2
√

5/4

∫
r=0

32r2 dr

= 2
√

5/4r3/3|30
= 9
√

5 ≈ 20.12 .

35.1: What is the curvature of a circle of radius 2?

Solution The curvature of a circle is just the multiplicative inverse of the radius, so 1/2 = 0.5000 .

37.1: Show the Divergence Theorem in 2D using Stokes’ Theorem.

Solution Solution not included.

37.2: Show the Divergence Theorem in 3D using Stokes’ Theorem.

Solution Solution not included.
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